2 research outputs found

    Promising Routes to a High Li<sup>+</sup> Transference Number Electrolyte for Lithium Ion Batteries

    No full text
    The continued search for routes to improve the power and energy density of lithium ion batteries for electric vehicles and consumer electronics has resulted in significant innovation in all cell components, particularly in electrode materials design. In this Review, we highlight an often less noted route to improving energy density: increasing the Li<sup>+</sup> transference number of the electrolyte. Turning to Newman’s original lithium ion battery models, we demonstrate that electrolytes with modestly higher Li<sup>+</sup> transference numbers compared to traditional carbonate-based liquid electrolytes would allow higher power densities and enable faster charging (e.g., >2C), even if their conductivity was substantially lower than that of conventional electrolytes. Most current research in high transference number electrolytes (HTNEs) focuses on ceramic electrolytes, polymer electrolytes, and ionomer membranes filled with nonaqueous solvents. We highlight a number of the challenges limiting current HTNE systems and suggest additional work on promising new HTNE systems, such as “solvent-in-salt” electrolytes, perfluorinated solvent electrolytes, nonaqueous polyelectrolyte solutions, and solutions containing anion-decorated nanoparticles

    Reaction Kinetics of Germanium Nanowire Growth on Inductively Heated Copper Surfaces

    No full text
    This article describes the chemical kinetics of germanium nanowire growth on inductively heated copper surfaces using diphenylgermane as a precursor. Inductive heating of metal surfaces presents a simple, rapid, and contact-free method to activate the direct growth of nanowires on metal surfaces. We show the main effects of synthesis temperature, duration, precursor concentration on the morphology, and loading of the nanowire film. We describe the complex interplay of precursor degradation, nucleation, and growth in context of a multistep reaction mechanism. We studied the temporal evolution of nanowire loading and morphology to develop a kinetic model, which predicts critical thresholds that define the onset of sequential axial and radial nanowire growth modes. These results may be used to commercially scale a nanowire growth process
    corecore