59 research outputs found

    Blasts-more than meets the eye: Evaluation of post-induction day 21 bone marrow in CBFB rearranged acute leukemia

    Get PDF
    Induction chemotherapy is often the first therapeutic intervention for acute myeloid leukemia (AML). Evaluation of post induction bone marrow provides critical information for clinical management; in general increased blast countsor increased marrow cellularity is an ominous sign, suggestive of ineffective therapy, and may warrant additional rounds of chemotherapy. However, increased blasts alone are not necessarily predictive of recurrent/persistent disease. Here we report a very unusual observation in a case of AML with a core binding factor beta (CBFB) rearrangement. In this case the day 21 post-induction marrow biopsy showed a high blast count (approximately 20%), however,subsequent fluorescence in-situ hybridization studies were negative for CBFB rearrangement. We compared this finding to post-induction marrows from a series of 6 AML cases with CBFB rearrangements, none of which showed an increased blast count. This case illustrates that increased blast counts, even those comprising 20% of cells, are not de facto evidence of induction failure, and that correlation with ancillary studies such as fluorescence in-situhybridization should be used to distinguish a persistent neoplastic clone, from a brisk marrow recovery

    Sequencing-based measurable residual disease testing in acute myeloid leukemia

    Get PDF
    Next generation sequencing (NGS) methods have allowed for unprecedented genomic characterization of acute myeloid leukemia (AML) over the last several years. Further advances in NGS-based methods including error correction using unique molecular identifiers (UMIs) have more recently enabled the use of NGS-based measurable residual disease (MRD) detection. This review focuses on the use of NGS-based MRD detection in AML, including basic methodologies and clinical applications

    FGFR2 amplification in colorectal adenocarcinoma

    Get PDF
    FGFR2 is recurrently amplified in 5% of gastric cancers and 1%–4% of breast cancers; however, this molecular alteration has never been reported in a primary colorectal cancer specimen. Preclinical studies indicate that several FGFR tyrosine-kinase inhibitors (TKIs), such as AZD4547, have in vitro activity against the FGFR2-amplified colorectal cell line, NCI-H716. The efficacy of these inhibitors is currently under investigation in clinical trials for breast and gastric cancer. Thus, better characterizing colorectal tumors for FGFR2 amplification could identify a subset of patients who may benefit from FGFR TKI therapies. Here, we describe a novel FGFR2 amplification identified by clinical next-generation sequencing in a primary colorectal cancer. Further characterization of the tumor by immunohistochemistry showed neuroendocrine differentiation, similar to the reported properties of the NCI-H716 cell line. These findings demonstrate that the spectrum of potentially clinically actionable mutations detected by targeted clinical sequencing panels is not limited to only single-nucleotide polymorphisms and insertions/deletions but also to copy-number alterations.</jats:p

    Performance of Common Analysis Methods for Detecting Low-Frequency Single Nucleotide Variants in Targeted Next-Generation Sequence Data

    Get PDF
    Next-generation sequencing (NGS) is becoming a common approach for clinical testing of oncology specimens for mutations in cancer genes. Unlike inherited variants, cancer mutations may occur at low frequencies because of contamination from normal cells or tumor heterogeneity and can therefore be challenging to detect using common NGS analysis tools, which are often designed for constitutional genomic studies. We generated high-coverage (>1000×) NGS data from synthetic DNA mixtures with variant allele fractions (VAFs) of 25% to 2.5% to assess the performance of four variant callers, SAMtools, Genome Analysis Toolkit, VarScan2, and SPLINTER, in detecting low-frequency variants. SAMtools had the lowest sensitivity and detected only 49% of variants with VAFs of approximately 25%; whereas the Genome Analysis Toolkit, VarScan2, and SPLINTER detected at least 94% of variants with VAFs of approximately 10%. VarScan2 and SPLINTER achieved sensitivities of 97% and 89%, respectively, for variants with observed VAFs of 1% to 8%, with >98% sensitivity and >99% positive predictive value in coding regions. Coverage analysis demonstrated that >500× coverage was required for optimal performance. The specificity of SPLINTER improved with higher coverage, whereas VarScan2 yielded more false positive results at high coverage levels, although this effect was abrogated by removing low-quality reads before variant identification. Finally, we demonstrate the utility of high-sensitivity variant callers with data from 15 clinical lung cancers

    A common founding clone with TP53 and PTEN mutations gives rise to a concurrent germ cell tumor and acute megakaryoblastic leukemia

    Get PDF
    We report the findings from a patient who presented with a concurrent mediastinal germ cell tumor (GCT) and acute myeloid leukemia (AML). Bone marrow pathology was consistent with a diagnosis of acute megakaryoblastic leukemia (AML M7), and biopsy of an anterior mediastinal mass was consistent with a nonseminomatous GCT. Prior studies have described associations between hematological malignancies, including AML M7 and nonseminomatous GCTs, and it was recently suggested that a common founding clone initiated both cancers. We performed enhanced exome sequencing on the GCT and the AML M7 from our patient to define the clonal relationship between the two cancers. We found that both samples contained somatic mutations in PTEN (C136R missense) and TP53 (R213 frameshift). The mutations in PTEN and TP53 were present at ∼100% variant allele frequency (VAF) in both tumors. In addition, we detected and validated five other shared somatic mutations. The copy-number analysis of the AML exome data revealed an amplification of Chromosome 12p. We also identified a heterozygous germline variant in FANCA (S858R), which is known to be associated with Fanconi anemia but is of uncertain significance here. In summary, our data not only support a common founding clone for these cancers but also suggest that a specific set of distinct genomic alterations (in PTEN and TP53) underlies the rare association between GCT and AML. This association is likely linked to the treatment resistance and extremely poor outcome of these patients. We cannot resolve the clonal evolution of these tumors given limitations of our data

    Melanoma in a patient with DNMT3A overgrowth syndrome

    Get PDF
    Alterations in epigenetic regulators are increasingly recognized as early events in tumorigenesis; thus, patients with acquired or inherited variants in epigenetic regulators may be at increased risk for developing multiple types of cancer. DNMT3A overgrowth syndrome (DOS), caused by germline pathogenic variants in the DNA methyltransferase gen

    A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG-CPSF6 fusion

    Get PDF
    Key Points Novel RARG-CPSF6 fusion in an AML case with promyelocytic features and no evidence of PML-RARA or X-RARA fusion. Gene fusions involving RARG can initiate AML with promyelocytic morphological features.</jats:p

    Persistent molecular disease in adult patients with AML evaluated with whole-exome and targeted error-corrected DNA sequencing

    Get PDF
    PURPOSE: Persistent molecular disease (PMD) after induction chemotherapy predicts relapse in AML. In this study, we used whole-exome sequencing (WES) and targeted error-corrected sequencing to assess the frequency and mutational patterns of PMD in 30 patients with AML. MATERIALS AND METHODS: The study cohort included 30 patients with adult AML younger than 65 years who were uniformly treated with standard induction chemotherapy. Tumor/normal WES was performed for all patients at presentation. PMD analysis was evaluated in bone marrow samples obtained during clinicopathologic remission using repeat WES and analysis of patient-specific mutations and error-corrected sequencing of 40 recurrently mutated AML genes (MyeloSeq). RESULTS: WES for patient-specific mutations detected PMD in 63% of patients (19/30) using a minimum variant allele fraction (VAF) of 2.5%. In comparison, MyeloSeq identified persistent mutations above 0.1% VAF in 77% of patients (23/30). PMD was usually present at relatively high levels (\u3e2.5% VAFs), such that WES and MyeloSeq agreed for 73% of patients despite differences in detection limits. Mutations in CONCLUSION: PMD and clonal hematopoiesis are both common in patients with AML in first remission. These findings demonstrate the importance of baseline testing for accurate interpretation of mutation-based tumor monitoring assays for patients with AML and highlight the need for clinical trials to determine whether these complex mutation patterns correlate with clinical outcomes in AML
    • …
    corecore