5 research outputs found

    Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver

    Full text link
    Recent advances in Noisy Intermediate-Scale Quantum (NISQ) devices have brought much attention to the potential of the Variational Quantum Eigensolver (VQE) and related techniques to provide practical quantum advantage in computational chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could achieve quantum advantage for systems of practical interest and how large such an advantage might be. To address these questions, we have performed an exhaustive set of benchmarks to estimate number of qubits and number of measurements required to compute the combustion energies of small organic molecules to within chemical accuracy using VQE as well as state-of-the-art classical algorithms. We consider several key modifications to VQE, including the use of Frozen Natural Orbitals, various Hamiltonian decomposition techniques, and the application of fermionic marginal constraints. Our results indicate that although Frozen Natural Orbitals and low-rank factorizations of the Hamiltonian significantly reduce the qubit and measurement requirements, these techniques are not sufficient to achieve practical quantum computational advantage in the calculation of organic molecule combustion energies. This suggests that new approaches to estimation leveraging quantum coherence, such as Bayesian amplitude estimation [arxiv:2006.09350, arxiv:2006.09349], may be required in order to achieve practical quantum advantage with near-term devices. Our work also highlights the crucial role that resource and performance assessments of quantum algorithms play in identifying quantum advantage and guiding quantum algorithm design.Comment: 27 pages, 18 figure

    Silica as support and binder in bifunctional catalysts with ultralow Pt loadings for the hydroconversion of n-alkanes

    Get PDF
    Hydroconversion is a key step in the production of ultraclean fuels from renewable sources. This reaction is carried out using a bifunctional catalyst consisting of a base metal sulfide or a noble metal and a solid acid. Recently, we have shown that for Pt/Al2O3/ZSM-22 catalysts with low Pt loadings (≤0.01 wt%) it is advantageous – to both the activity as well as the isomer selectivity - to emplace the Pt on the zeolite crystallites instead of on the Al2O3 binder. When these low loadings of Pt were on the alumina binder, small clusters or even single atoms were present which were hard to reduce leading to inactivity of the catalysts. Herein, we explore the replacement of alumina by silica, and the performance of catalysts with ultralow Pt loadings on the conversion of longer-chain hydrocarbons. A series of Pt/SiO2/ZSM-22 catalysts with varying Pt weight loadings (0.001, 0.005, 0.01, 0.05, 0.1 and 0.5 wt%) and location (on silica or on ZSM-22) was prepared and characterized using ICP, NH3-TPD, HAADF-STEM and XAS. Their hydroconversion performance was evaluated using n-heptane and n-hexadecane as model feedstocks. As for the Pt/Al2O3/ZSM-22 catalysts systems, for Pt/SiO2/ZSM-22 catalysts with low Pt loadings (≤0.01 wt% for n-heptane conversion) it was beneficial to have the Pt nanoparticles on the ZSM-22 crystals. Hydroconversion of n-hexadecane over Pt/SiO2/ZSM-22 and Pt/Al2O3/ZSM-22 catalysts showed that for feedstocks with a higher molecular weight, higher Pt loadings (≥0.05 wt%) are required for sufficient catalytic performance. For the conversion of n-hexadecane it was beneficial to locate these higher amounts of Pt on the binder

    Improved THETA-1 for light olefins oligomerization to diesel: Influence of textural and acidic properties

    Full text link
    The increase in diesel demand, especially in Europe, and the need for high fuel quality requirements are forcing refiners to move into additional processes for production of high cetane diesel in order to meet the present market trends. Oligomerization of light olefins into middle distillate range products is a viable option. The fuel produced through this technology is environmentally friendly, free of sulfur and aromatics, and the adequate choice of the heterogeneous catalyst will direct the selectivity towards low branched oligomers, which will result in a high quality product. In this work we show the benefits of combining basic desilication treatments for generation of additional mesoporosity in mono-directional Theta-1 zeolite, with selective acid dealumination steps that restore not only the microporosity to values close to those of the parent samples, but also the total and strong Bronsted acidity. These modified Theta-1 zeolites present an outstanding catalytic behavior for oligomerization of propene, with a largely increased initial activity, a much higher resistance to deactivation with time on stream, and an improved selectivity to products in the diesel fraction, as compared to the original microporous Theta-1.The authors thank BP Products of North America for their financial support and permission to publish this work, and Consolider Ingenio 2010-Multicat, the "Severo Ochoa Program", and MAT2012-31657 for financial support. R. Sanchis is acknowledged for technical support.Martínez, C.; Doskocil, EJ.; Corma Canós, A. (2014). Improved THETA-1 for light olefins oligomerization to diesel: Influence of textural and acidic properties. Topics in Catalysis. 57(6-9):668-682. https://doi.org/10.1007/s11244-013-0224-xS668682576-9Bellussi G, Mizia F, Calemma V, Pollesel P, Millini R (2012) Microporous Mesoporous Mater 164:127–134Bellussi G, Carati A, Millini R (2010) In: Cejka J, Corma A, Zones S (eds) Zeolites and Catalysis. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 449–491Martinez C, Corma A (2011) Coord Chem Rev 255:1558–1580de Klerk A (2005) Ind Eng Chem Res 44:3887–3893de Klerk A (2006) Energy Fuels 20:439–445de Klerk A (2006) Energy Fuels 20:1799–1805Egloff G (1936) Ind Eng Chem Res 28:1461–1467Degnan TF Jr, Smith CM, Venkat CR (2001) Appl Catal A Gen 221:283–294Apelian MR, Boulton JR, Fung AS (1994) US5284989, to Mobil OilQuann RJ, Green LA, Tabak SA, Krambeck FJ (1988) Ind Eng Chem Res 27:565–570Tabak SA, Krambeck FJ, Garwood WE (1986) AIChE J 32:1526–1531Corma A, Martínez C, Doskocil EJ (2013) J Catal 300:183–196Martens JA, Ravishankar R, Mishin IE, Jacobs PE (2000) Angew Chem Int Ed Engl 39:4376–4379Martens JA, Verrelst WH, Mathys GM, Brown SH, Jacobs PA (2005) Angew Chem Int Ed Engl 117(5833–583):6Pater JPG, Jacobs PA, Martens JA (1998) J Catal 179:477–482Tabak SA (1981) US4254295, to Mobil OilOccelli ML, Hsu JT, Galya LG (1985) J Mol Catal A: Chem 32:377–390Tabak SA (1984) US4504693, to Mobil Oil CorpKholer E, Schmidt F, Wernicke HJ, Pontes MD, Roberts HL (1995, Summer) Hydrocarbon Technology InternationalMartens JA, Verduijn JP (1995) WO95/19945, to Exxon Chemical Patents Inc.Verrelst WH (1995) Martens LRM, WO95/22516, to Exxon Chemical Patents Inc.Verrelst WH, Martens LRM (2000) US6143942, to Exxon Chemical Patents Inc.Verrelst WH, Martens LRM, Verduijn JP (2006) US6013851, to Exxon Chemical Patents Inc.Dakka JM, Mathys GMK, Puttemans MPH (2003) WO03/035583 to Exxon-Mobil Chemical LimitedMatias P, Sa CC, Graca I, Lopes JM, Carvalho AP, Ramoa RF, Guisnet M (2011) Appl Catal A 399:100–109Chal R, Gérardin C, Bulut M, van Donk S (2011) ChemCatChem 3:67–81Perez-Ramirez J, Christensen CH, Egeblad K, Groen JC (2008) Chem Soc Rev 37:2530–2542Verboekend D, Perez-Ramirez J (2011) Catal Sci Technol 1:879–890Serrano DP, Escola JM, Pizarro P (2013) Chem Soc Rev 42:4004–4035Verboekend D, Chabaneix AM, Thomas K, Gilson JP, Perez-Ramirez J (2011) Cryst Eng Comm 13:3408–3416Emeis CA (1993) J Catal 141:347–354Perego C, Peratello S (1999) Catal Today 52:133–145Abello S, Bonilla A, Perez-Ramirez J (2009) Appl Catal A Gen 364:191–198Corma A, Martinez C, Doskocil EJ, Yaluris G (2011) WO2011002631A2, to BP Oil International Limited. BP Corporation North America Inc., UKCorma A, Martinez C, Doskocil EJ, Yaluris G (2011) WO2011002630A2, to BP Oil International Limited. BP Corporation North America Inc, UKHan S, Heck RH, DiGuiseppi FT (1993) US5234875, to Mobil Oil CorporationPeratello S, Molinari M, Bellussi G, Perego C (1999) Catal Today 52:271–27

    Effect of Water and Alkali Modifications on ETS-10 for the Cycloaddition of CO 2

    No full text

    Characterization of selective oxidation catalysts from polyoxometalate precursors using ammonia adsorption microcalorimetry and methanol oxidation studies

    No full text
    Phosphomolybdic acid (H3PMo12O40) along with niobium, pyridine and niobium/pyridine exchanged phosphomolybdic acid compounds were prepared. These compounds were converted to selective oxidation catalysts by pre-treating to 693 K in an inert atmosphere. As shown previously, the active catalyst consists of partially decomposed, partially reduced Keggin units and MoOx fragments with some MoOx fragments collected around the Nb. The amount of surface Mo species reduced to the 5+ oxidation state varied among the catalysts. Ammonia adsorption microcalorimetry and methanol oxidation studies were carried out to investigate the acid sites strength and the acid/base/redox properties of each catalyst. The addition of niobium, pyridine or both increased the ammonia heat of adsorption by 30-40 kJ/mol and the total ammonia uptake. The catalyst with both niobium and pyridine demonstrated the largest number of strong sites. For the parent H 3PMo12O40 catalyst, methanol oxidation favors the redox product (∼95% selectivity). However, catalyst deactivation occurs. The presence of niobium results in similar selectivity to redox products (∼93%) but also results in no catalyst deactivation. Incorporation of pyridine to the precursor compound, in contrast, changes the selectivity to initially favor the acid product (∼62%). Again, the catalyst deactivated and selectivity changed during deactivation to favor the redox product (∼55%). Finally, the inclusion of both niobium and pyridine results in strong selectivity to the acid product (∼95%) while also showing no catalyst deactivation and stable selectivity. Specific activity for the niobium and pyridine exchanged catalyst for the methanol oxidation reaction was twice any other catalyst. Selectivity to acid products was correlated with the amount of reduced surface Mo species. Thus, the presence of pyridine appears to enhance the acid property of the active site in the catalyst while niobium appears to stabilize the active site. © 2013 Elsevier B.V
    corecore