2 research outputs found

    Progressive Increase in Disinfection Byproducts and Mutagenicity from Source to Tap to Swimming Pool and Spa Water: Impact of Human Inputs

    No full text
    Pools and spas are enjoyed throughout the world for exercise and relaxation. However, there are no previous studies on mutagenicity of disinfected spa (hot tub) waters or comprehensive identification of disinfection byproducts (DBPs) formed in spas. Using 28 water samples from seven sites, we report the first integrated mutagenicity and comprehensive analytical chemistry of spas treated with chlorine, bromine, or ozone, along with pools treated with these same disinfectants. Gas chromatography (GC) with high-resolution mass spectrometry, membrane-introduction mass spectrometry, and GC-electron capture detection were used to comprehensively identify and quantify DBPs and other contaminants. Mutagenicity was assessed by the <i>Salmonella</i> mutagenicity assay. More than 100 DBPs were identified, including a new class of DBPs, bromoimidazoles. Organic extracts of brominated pool/spa waters were 1.8× more mutagenic than chlorinated ones; spa waters were 1.7× more mutagenic than pools. Pool and spa samples were 2.4 and 4.1× more mutagenic, respectively, than corresponding tap waters. The concentration of the sum of 21 DBPs measured quantitatively increased from finished to tap to pool to spa; and mutagenic potency increased from finished/tap to pools to spas. Mutagenic potencies of samples from a chlorinated site correlated best with brominated haloacetic acid concentrations (Br-HAAs) (<i>r</i> = 0.98) and nitrogen-containing DBPs (N-DBPs) (<i>r</i> = 0.97) and the least with Br-trihalomethanes (<i>r</i> = 0.29) and Br–N-DBPs (<i>r</i> = 0.04). The mutagenic potencies of samples from a brominated site correlated best (<i>r</i> = 0.82) with the concentrations of the nine HAAs, Br-HAAs, and Br-DBPs. Human use increased significantly the DBP concentrations and mutagenic potencies for most pools and spas. These data provide evidence that human precursors can increase mutagenic potencies of pools and spas and that this increase is associated with increased DBP concentrations

    Occurrence and Toxicity of Disinfection Byproducts in European Drinking Waters in Relation with the HIWATE Epidemiology Study

    No full text
    The HIWATE (<b>H</b>ealth <b>I</b>mpacts of long-term exposure to disinfection byproducts in drinking <b>WATE</b>r) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long-term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from five European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs
    corecore