613 research outputs found

    Position-space cuts for Wilson line correlators

    Get PDF
    We further develop the formalism for taking position-space cuts of eikonal diagrams introduced in [Phys.Rev.Lett. 114 (2015), no. 18 181602, arXiv:1410.5681]. These cuts are applied directly to the position-space representation of any such diagram and compute its discontinuity to the leading order in the dimensional regulator. We provide algorithms for computing the position-space cuts and apply them to several two- and three-loop eikonal diagrams, finding agreement with results previously obtained in the literature. We discuss a non-trivial interplay between the cutting prescription and non-Abelian exponentiation. We furthermore discuss the relation of the imaginary part of the cusp anomalous dimension to the static interquark potential.Comment: 39+18 pages, 16 figures; elaborated the discussion of the comparison of numerical and analytic results for the three-gluon vertex diagram in the caption of fig. 16; version to be published in JHE

    Imaginary parts and discontinuities of Wilson line correlators

    Get PDF
    We introduce a notion of position-space cuts of eikonal diagrams, the set of diagrams appearing in the perturbative expansion of the correlator of a set of straight semi-infinite Wilson lines. The cuts are applied directly to the position-space representation of any such diagram and compute its imaginary part to the leading order in the dimensional regulator. Our cutting prescription thus defines a position-space analog of the standard momentum-space Cutkosky rules. Unlike momentum-space cuts which put internal lines on shell, position-space cuts constrain a number of the gauge bosons exchanged between the energetic partons to be lightlike, leading to a vanishing and a non-vanishing imaginary part for space- and timelike kinematics, respectively.Comment: 5 pages, 2 figures; minor changes; version published in PR

    A systematic search for close supermassive black hole binaries in the Catalina Real-Time Transient Survey

    Get PDF
    Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2 year periodic signal in the quasar PG 1302-102 (Graham et al. 2015), we present a novel analysis of the optical variability of 243,500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (< 0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accretion disks or periodic accretion associated with a close SMBH binary system. We also consider how other SMBH binary candidates in the literature appear in CRTS data and show that none of these are equivalent to the identified objects. Finally, the distribution of objects found is consistent with that expected from a gravitational wave-driven population. This implies that circumbinary gas is present at small orbital radii and is being perturbed by the black holes. None of the sources is expected to merge within at least the next century. This study opens a new unique window to study a population of close SMBH binaries that must exist according to our current understanding of galaxy and SMBH evolution.Comment: 29 pages, 10 figures, accepted for publication in MNRAS - this version contains extended table and figur

    Sampling Bias Exaggerates a Textbook Example of a Trophic Cascade

    Get PDF
    Understanding trophic cascades in terrestrial wildlife communities is a major challenge because these systems are difficult to sample properly. We show how a tradition of non-random sampling has confounded this understanding in a textbook system (Yellowstone National Park) where carnivore [Canis lupus (wolf)] recovery is associated with a trophic cascade involving changes in herbivore [Cervus canadensis (elk)] behaviour and density that promote plant regeneration. Long-term data indicate a practice of sampling only the tallest young plants overestimated regeneration of overstory aspen (Populus tremuloides) by a factor of 4–7 compared to random sampling because it favoured plants taller than the preferred browsing height of elk and overlooked non-regenerating aspen stands. Random sampling described a trophic cascade, but it was weaker than the one that non-random sampling described. Our findings highlight the critical importance of basic sampling principles (e.g. randomisation) for achieving an accurate understanding of trophic cascades in terrestrial wildlife systems

    Non-Random Sampling Measures the Occurrence but not the Strength of a Textbook Trophic Cascade

    Get PDF
    Although sampling the five tallest young aspen in a stand is useful for detecting the occurrence of any aspen recruitment, this technique overestimates the population response of aspen to wolf reintroduction. Our original conclusion that random sampling described a trophic cascade that was weaker than the one described by non-random sampling is unchanged

    Improving Usability of Social and Behavioral Sciences’ Evidence: A Call to Action for a National Infrastructure Project for Mining Our Knowledge

    Get PDF
    Over the last century, the social and behavioral sciences have accumulated a vast storehouse of knowledge with the potential to transform society and all its constituents. Unfortunately, this knowledge has accumulated in a form (e.g., journal papers) and scale that makes it extremely difficult to search, categorize, analyze, and integrate across studies. In this commentary based on a National Science Foundation-funded workshop, we describe the social and behavioral sciences’ knowledge-management problem. We discuss the knowledge-scale problem and how we lack a common language, a common format to represent knowledge, a means to analyze and summarize in an automated way, and approaches to visualize knowledge at a large scale. We then describe that we need a collaborative research program between information systems, information science, and computer science (IICS) researchers and social and behavioral science (SBS) researchers to develop information system artifacts to address the problem that many scientific disciplines share but that the social and behavioral sciences have uniquely not addressed

    A Coupled Experimental and Computational Approach to Quantify Deleterious Hemodynamics, Vascular Alterations, and Mechanisms of Long-Term Morbidity in Response to Aortic Coarctati

    Get PDF
    Introduction Coarctation of the aorta (CoA) is associated with morbidity despite treatment. Although mechanisms remain elusive, abnormal hemodynamics and vascular biomechanics are implicated. We present a novel approach that facilitates quantification of coarctation-induced mechanical alterations and their impact on vascular structure and function, without genetic or confounding factors. Methods Rabbits underwent thoracic CoA at 10 weeks of age (~ 9 human years) to induce a 20 mm Hg blood pressure (BP) gradient using permanent or dissolvable suture thereby replicating untreated and corrected CoA. Computational fluid dynamics (CFD) was performed using imaging and BP data at 32 weeks to quantify velocity, strain and wall shear stress (WSS) for comparison to vascular structure and function as revealed by histology and myograph results. Results Systolic and mean BP was elevated in CoA compared to corrected and control rabbits leading to vascular thickening, disorganization and endothelial dysfunction proximally and distally. Corrected rabbits had less severe medial thickening, endothelial dysfunction, and stiffening limited to the proximal region despite 12 weeks of normal BP (~ 4 human years) after the suture dissolved. WSS was elevated distally for CoA rabbits, but reduced for corrected rabbits. Discussion These findings are consistent with alterations in humans. We are now poised to investigate mechanical contributions to mechanisms of morbidity in CoA using these methods
    • …
    corecore