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1 Introduction

The infrared singularities of gauge theory scattering amplitudes play a fundamental role

in particle physics for phenomenological as well as more theoretical studies. Determining

the long-distance singularities is necessary for combining the real and virtual contributions

to the cross section, as the divergences of the separate contributions only cancel once

they are added. Infrared singularities moreover dictate the structure of large logarithmic

contributions to the cross section, allowing such terms to be resummed — which is in

many cases required in order to obtain reliable perturbative predictions. Beyond their

significance to collider phenomenology, long-distance singularities are highly interesting

from a theoretical point of view. Among several properties, they have a universal structure

among different gauge theories; moreover, their exponentiation properties [2–14] and their

relation to the renormalization of Wilson line correlators [15–21] allow their perturbative

expansion to be explored to all orders, a feat currently unattainable for complete scattering

amplitudes.

The basic tool for computing the infrared singularities of any scattering amplitude is

provided by the eikonal approximation. In this limit the momenta of the soft gauge bosons

emitted between the partons emerging from the hard interaction are neglected with respect
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to the hard momenta pi. As a result, each hard parton i simply acts as a source of soft

gluon radiation and is accordingly replaced by a semi-infinite Wilson line

Φvi ≡ P exp

(
ig

∫ ∞
0

dt vi ·A(tvi)

)
, (1.1)

which extends from time t = 0, when the hard scattering takes place, to infinity along the

classical trajectory of the hard parton, traced out by its four-velocity vµi . The long-distance

singularities of the scattering amplitude of the hard partons are then encoded in the eikonal

amplitude

S(γij , ε) ≡ 〈0 |Φv1 ⊗ Φv2 ⊗ · · · ⊗ Φvn | 0〉 , (1.2)

which has the same soft singularities as the original amplitude, but is much simpler to

compute. An important feature of the eikonal amplitude (1.2) is the fact that it depends

on the kinematics only through the angles γij between the four-velocities (defined through

cosh γij ≡ |vi · vj |). Before renormalization, the integrals involved in the loop-level contri-

butions to S are thus scale invariant and vanish identically. This in turn allows the infrared

singularities at any loop order to be computed by studying the ultraviolet renormalization

factor of the Wilson line correlator (1.2) [19, 21–25]. This renormalization factor forms

a matrix in the space of color configurations available for the scattering process at hand,

referred to as the soft anomalous dimension matrix. In processes involving only two Wil-

son lines, this matrix reduces to the cusp anomalous dimension, a quantity which has been

computed in QCD up to three loops [21, 26, 27]. In N = 4 super Yang-Mills theory, the

cusp anomalous dimension is known to three loops [28], and partial results have been ob-

tained at four loops [29, 30]. For multi-parton amplitudes, the soft anomalous dimension

matrix has been computed through two loops for massless [31, 32] as well as massive [33–37]

Wilson lines. Recently, much progress has been made toward the calculation of the soft

anomalous dimension matrix at three loops [38, 39].

In this paper we continue exploring a notion of cuts of eikonal diagrams (i.e., the dia-

grams contributing to the eikonal amplitude) introduced in ref. [1]. Applied to any eikonal

diagram, the cuts compute the discontinuities of the diagram, in analogy with the Cutkosky

rules for standard Feynman diagrams. The discontinuities are in turn readily combined

to produce the imaginary part of the diagram, a direct computational method of which

is desirable in several contexts. Indeed, collinear factorization theorems for non-inclusive

observables were pointed out in refs. [40, 41] to be violated due to exchanges of Glauber-

region (i.e., maximally transverse) gluons. The resulting factorization-breaking terms are

purely imaginary and take the form of the non-Abelian analog of the QED Coulomb phase.

Therefore, by utilizing the all-order exponentiation property of the eikonal amplitude, the

latter could be obtained directly by computing the imaginary part of the exponent. The

resulting non-Abelian Coulomb phase [42, 43] may also aid studies of interference effects.

The importance of understanding the imaginary part of eikonal diagrams has also recently

been highlighted in studies regarding rapidity gaps [44, 45]. Moreover, cuts of Wilson line

correlators are naturally relevant for cross section calculations [46, 47].

A cutting prescription for eikonal diagrams may also provide the first step toward

extending the modern unitarity method [48–57] to eikonal amplitudes. The development
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of the unitarity method has led to a dramatic improvement in the ability to compute

loop-level (non-eikonal) scattering amplitudes at high multiplicity. In this approach, the

loop amplitude is decomposed into a linear basis of loop integrals which are computed

independently (for example, by means of Feynman parametrization, or differential equa-

tions [58, 59]). The calculation of the loop amplitude is then reduced to the problem of

determining the integral coefficients. This step is performed by applying to both sides of

the basis decomposition of the loop amplitude a number of cuts which have the effect of

putting the internal lines on shell. In basic unitarity (as opposed to generalized unitarity),

the cuts employed measure the discontinuity of the amplitude in its various kinematical

channels. Unitarity has proven highly successful, notably in computing one-loop ampli-

tudes with many partons in the final state. It is therefore natural to look for extensions of

this method to other physical quantities with a perturbative expansion.

It should be emphasized that Cutkosky rules for eikonal diagrams have been introduced

previously in the literature, as a cut prescription applied directly to the momentum-space

representation of the diagrams [21]. In contrast, the cuts introduced in ref. [1] and further

studied here are applied to the position-space representation of the eikonal diagrams. A

notion of position-space cuts of non-eikonal diagrams exists in the literature in the form

of a cutting equation that follows from Veltman’s largest-time equation [60]. However,

that notion is conceptually different from the position-space cuts in this paper, since the

former has the effect of cutting a given diagram in two disconnected subdiagrams while the

latter does not. Moreover, in practice, the largest-time equation is typically not applied

directly, but rather serves to derive the momentum-space Cutkosky rules, which in turn

are used to obtain the imaginary part of a diagram. As already observed in ref. [1],

position-space cuts provide a substantial simplification over momentum-space cuts in the

computation of imaginary parts of eikonal diagrams. There has been recent interest in the

literature in studying Wilson line correlators in position space, in particular refs. [61–63]

which investigate the structure of infrared singularities and factorization in position space.

Moreover, position-space analogs of generalized unitarity cuts of Wilson line correlators

were recently introduced in ref. [64].

The structure of this paper is as follows. In section 2 we discuss the origin of the

imaginary part of Wilson line correlators from the point of view of causality as well as

unitarity. We then show how the imaginary part can be computed from the position- and

the momentum-space representations at one loop. In section 3 we review the formula in

ref. [1] for the imaginary part of L-loop eikonal diagrams containing no internal (i.e., three-

or four-gluon) vertices to the leading order in the dimensional regulator ε. We furthermore

discuss the relation of the discontinuities of the diagrams to their imaginary part. In

section 4 we apply the formalism to compute the imaginary part of a number of two- and

three-loop diagrams and discuss a non-trivial interplay between the cutting prescription

and non-Abelian exponentiation. In section 5 we turn to formulas for the imaginary part

of eikonal diagrams with internal vertices and provide details on its computation. We give

our conclusions in section 6. Appendix A explains our method for computing the principal-

value integrals involved in the cutting prescription. In appendix B we present our algorithm

for re-expressing multiple polylogarithms in terms of ones with constant indices.
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Figure 1. One-loop eikonal diagrams. In (a) both Wilson lines represent final-state partons (as for

example in e+e− → qq̄). Thus, the external velocities are in the region v1 · v2 > 0, and the partons

can become lightlike separated. In (b) one Wilson line represents a final-state parton, and one

represents an initial-state parton (as for example in deep inelastic scattering). Thus, the external

velocities are in the region v1 · v2 < 0, and the partons are never lightlike separated.

2 Imaginary parts of eikonal diagrams and their physical origin

In this section we will discuss the origin of the imaginary part of Wilson line correlators from

the point of view of causality as well as unitarity. These viewpoints are naturally provided

by the representation of the correlator in position and momentum space, respectively. We

will show how the imaginary part can be computed directly from each of the respective

integral representations at one loop.

We adopt the convention that all velocities are outgoing, such that the velocities as-

sociated with outgoing and incoming states respectively have positive and negative time

components. We will take the gauge group to be SU(N) and work in Feynman-’t Hooft

gauge with (+,−,−,−) spacetime signature. Ultraviolet divergences will be regulated by

computing all diagrams in D = 4 − 2ε dimensions with ε > 0. To avoid complications

arising from regulating collinear singularities, we take all velocities to be time-like, v2
i = 1.

We start our investigations by examining the simplest eikonal diagram, the one-loop

exchange illustrated in figure 1. In both kinematic regions (a) and (b), the position-

space representation of the diagram is straightforwardly obtained by direct perturbative

expansion1 in g of the correlator (1.2) and takes the form

F (1) = C(1)µ2ε

∫ ∞
0

dt1

∫ ∞
0

dt2
v1 · v2

[−(t1v1 − t2v2)2 + iη]1−ε
, (2.1)

where the prefactor is defined as C(1) ≡ g2CF
Γ(D/2−1)

4πD/2
, with CF = N2−1

2N denoting the

quadratic Casimir of the fundamental representation. Furthermore, t1, t2 have the dimen-

sion of time and denote the positions of the attachment points of the soft-gluon propagator

on the Wilson lines spanned by the four-velocities v1 and v2.

The integrations in eq. (2.1) produce an infrared divergence which can be extracted via

the change of variables (t1, t2) = (λx, λ(1− x)) with 0 ≤ x ≤ 1, where λ has the dimension

1See chapter 8 of ref. [65] for the position-space Feynman rules.
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of length,

F (1) = C(1)µ2ε

∫ ∞
0

dλ

λ1−2ε

∫ 1

0
dx

v1 · v2[
−
(
xv1 − (1− x)v2

)2
+ iη

]1−ε . (2.2)

Indeed, the λ-integral is has an infrared divergence, owing to the exchange of gluons of

increasingly longer wavelength as λ → ∞. This divergence can be regularized in a gauge

invariant fashion by introducing an exponential damping factor e−Λλ with Λ� 1, whereby

it becomes

µ2ε

∫ ∞
0

dλ e−Λλ

λ1−2ε
= Γ(2ε)

(
µ

Λ

)2ε

=
1

2ε

(
µ

Λ

)2ε

+O(ε0) . (2.3)

The two diagrams in figure 1 have the same integrand; however, as the external kine-

matics is taken from the distinct regions v1 · v2 > 0 and v1 · v2 < 0, the integrations will

produce distinct results. It is most convenient to compute the diagram in figure 1(b) first

and obtain the result for figure 1(a) by analytic continuation as follows. For the diagram

in figure 1(b), we may define the deflection angle γ > 0 such that cosh γ = −v1 · v2, in

terms of which the diagram in figure 1(b) becomes, to the leading order in ε,

F
(1)
1(b) =

C(1)

2ε

(
µ

Λ

)2ε

γ coth γ . (2.4)

Likewise, for the diagram in figure 1(a), we may define the cusp angle γ > 0 such that

cosh γ = v1 · v2. The integrated expression for this diagram can thus be obtained from

eq. (2.4) by replacing γ(b) → πi− γ(b) = γ(a),

F
(1)
1(a) =

C(1)

2ε

(
µ

Λ

)2ε

(γ − πi) coth γ . (2.5)

We observe that the imaginary parts of the eikonal diagrams in figures 1(a) and 1(b)

are respectively non-vanishing and vanishing. Before turning to the question of how the

imaginary parts of the diagrams in eqs. (2.4)–(2.5) may be extracted from their integral

representation in eq. (2.2), let us consider their physical origin and interpretation.

From the position-space representation (2.1) of the eikonal diagram, the origin of the

imaginary part may be understood from a simple causality consideration as follows. As our

focus is on computing the imaginary part to the leading order in ε, the ε in the propagator

exponent may be dropped once the infrared divergence has been extracted. After moreover

stripping off real prefactors from eq. (2.1), the integral takes the form,∫ ∞
0

dt1

∫ ∞
0

dt2
1

(t1v1 − t2v2)2 − iη
. (2.6)

Now, for the kinematics corresponding to the diagram in figure 1(a), there are regions
t1
t2

= e±γ within the integration domain where (t1v1 − t2v2)2 = 0. Here the −iη term

becomes relevant and generates an imaginary part. What is happening physically at such

times t1, t2 is that the two partons traveling along v1 and v2 become lightlike separated.

This is illustrated in figure 2(a). As a result, the phases of their states will change through

– 5 –
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Figure 2. The one-loop eikonal diagrams of figure 1 embedded in a space-time diagram. In (a) both

Wilson lines are confined to the interior of the future light cone, describing two final state partons.

In this case the partons can become lightlike separated, which is illustrated by the exchange of a

lightlike gluon (i.e. a gluon that is aligned to the light cone). In (b) there is one incoming parton

inside the past light cone and an outgoing parton inside the future light cone. These partons are

never lightlike separated. Indeed, the gluon stretching between these two Wilson lines is necessarily

time-like (i.e. off shell).

exchanges of lightlike gluons (or photons) — leading to observable consequences that will

be discussed shortly. In contrast, for external kinematics corresponding to the diagram

in figure 1(b), the integral in eq. (2.6) has a vanishing imaginary part: the denominator

(t1v1− t2v2)2 is strictly positive within the region of integration, and the −iη can therefore

be dropped. In this situation, the partons are never lightlike separated, as illustrated in

figure 2(b), and the phases of their states cannot change through exchanges of lightlike

massless gauge bosons.

These observations on the evolution of the phases of the hard-parton states suggest that

the imaginary part of the correlator of two Wilson lines defines an interparton potential.

Indeed, in the non-relativistic limit, the final and initial two-particle states are related in

the interaction picture through time evolution by |f〉I = ei
∫∞
0 dt e−ΛtVI t|i〉I where VI denotes

the interaction potential. The relation of the correlator to a non-relativistic potential can

be made precise in the situation where the pair of energetic particles carry no color charges,

as for example in the case of an e+e− pair. In Abelian gauge theories, the correlator of

two Wilson lines can be written as the exponential of the sum of connected diagrams [2],

W ≡ 〈Φv1Φv2〉 = exp
(
F (1) +O(g4)

)
, (2.7)

where F (1) is the one-loop diagram in figure 1, and the additional diagrams contain a single

lepton loop connected to the Wilson lines by an arbitrary (even) number of soft-photon

exchanges. Using the result for the diagram F (1) computed for time-like kinematics in

eq. (2.5) (with CF → 1 to recover the Abelian case), the anomalous dimension of the

– 6 –
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Wilson-line correlator — i.e., the cusp anomalous dimension — evaluates to

Γcusp(γ) ≡ − lim
ε→0

d logW

d log µ
= − g2

4π2
(γ − πi) coth γ . (2.8)

The non-relativistic limit corresponds to the small-angle regime γ ≈ 0 where the two

velocities v1 and v2 are nearly collinear, and the relative velocity of the hard leptons thus

small. Accordingly, expanding eq. (2.8) around γ = 0 and taking the imaginary part,

we find

Im Γcusp(γ) =
g2

4πγ
+O(γ0) . (2.9)

We observe that the imaginary part of the cusp anomalous dimension evaluated in time-

like kinematics takes the form of the non-relativistic Coulomb potential (the appropriate

dimension of energy is acquired after replacing the angle γ by the distance between the

two fermions).

This relation does not extend to generic non-Abelian gauge theories, as we will discuss

shortly. It does, however, extend to the case of conformal field theories, such as N = 4 super

Yang-Mills theory, where the state-operator correspondence relates Wilson-line operators

in Minkowski space to states in R × AdS3. In radial quantization, a pair of Wilson lines

intersecting at a cusp angle γ with the resulting anomalous dimension Γcusp(γ) is mapped

to a pair of static charges in AdS3 separated by a distance of γ with an electrostatic energy2

of Im Γcusp [66]. For small values of the cusp angle, the charges on AdS3 become closer

than the curvature scale, and the electrostatic energy takes the form of the non-relativistic

interquark potential in flat space [28, 67]. (The non-relativistic approximation becomes

relevant here, as in the small-angle regime γ ≈ 0, the relative velocity of the hard partons

is small, as discussed above.)

However, for non-Abelian and non-conformal gauge theories such as QCD, diagrams

containing loop corrections to the soft propagators will have a dependence on the beta

function, thereby explicitly breaking the scale invariance of the diagram. As a result, in

QCD, the imaginary part of the three-loop cusp anomalous dimension Γ
(3)
cusp differs from

the static interquark potential by terms proportional to the beta function [27]. (This can

be seen by comparing the N2
f contribution to Γ

(3)
cusp, given in eq. (A.2) of ref. [68], against

the N2
f term of the three-loop static QCD potential,3 given in eq. (10) of ref. [69].)

Let us now turn to the question of how the imaginary part of the eikonal diagrams

in figure 1 may be obtained from their integral representation in eq. (2.2) where the in-

frared divergence has been extracted. We will restrict attention to the leading order in the

dimensional regulator ε, and accordingly drop the ε in the propagator exponent. We can

then utilize the formula∫ b

a
dx

f(x)

D(x)± iη
= PV

∫ b

a
dx

f(x)

D(x)
∓ πi

∫ b

a
dx f(x) δ

(
D(x)

)
, (2.10)

2The real part of the cusp anomalous dimension gives rise to an imaginary part of the electrostatic energy.

As argued in ref. [66], the resulting non-unitary time evolution is accounted for by the real radiation of soft

and collinear gluons along the Wilson lines.
3Note that in the literature on the interquark potential, the loop order is often defined as one less than

the standard notion.
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where PV indicates that the Cauchy principal value prescription is to be applied, and

the integration bounds a and b are real numbers. The denominator D(x) is a real-valued

polynomial in x, and the numerator f(x) is an arbitrary real-valued function with no poles

or branch points inside the integration path. As both integrals on the right-hand side of

eq. (2.10) are real, this formula achieves a decomposition into a purely real and purely

imaginary part.

Accordingly, at one loop, we define the position-space cut prescription

1

D(x)± iη
cut−→ ∓πi δ

(
D(x)

)
, (2.11)

in terms of which it is straightforward to obtain the imaginary part of the diagrams in fig-

ure 1 to the leading order in ε. For example, considering the time-like kinematics situation

in figure 1(a) and applying the prescription (2.11) to eq. (2.2) with the ε in the propagator

exponent set to zero, we find

ImF
(1)
1(a) = −π C(1)(v1 · v2)µ2ε

∫ ∞
0

dλ e−Λλ

λ1−2ε

∫ 1

0
dx δ

((
xv1 − (1− x)v2

)2)
. (2.12)

We can integrate out the delta function by use of the identity∫ 1

0
dx δ(Ax2 +Bx+ C) =

1√
∆

∑
i=1,2

θ(ρi) θ(1− ρi) , (2.13)

where ∆ ≡ B2 − 4AC and ρi respectively denote the discriminant and roots of the poly-

nomial. The roots ρi = 1
1+e±γ of the delta function argument in eq. (2.12) are manifestly

located inside the domain of the x-integration. The result of integrating out the delta

function in eq. (2.12) is therefore

ImF
(1)
1(a) = −πC

(1)

2ε

(
µ

Λ

)2ε

coth γ , (2.14)

in agreement with eq. (2.5). The calculation for the diagram in figure 1(b) is completely

analogous, except that in this case
∫ 1

0 dx δ
((
xv1−(1−x)v2

)2)
= 0, as both roots ρi = 1

1−e±γ
are located outside the domain of integration. We therefore find a vanishing imaginary

part, in agreement with eq. (2.4). We conclude that in both cases (a) and (b), the cutting

prescription (2.11) produces the correct imaginary part. We introduce a graphical notation

for the cutting prescription (2.11) in figure 3.

It is natural to ask whether the imaginary part of eikonal diagrams can also be obtained

from their momentum-space representation4

F (1) = ig2CFµ
2ε

∫
dDk

(2π)D
v1 · v2

(k2 + iη)(v1 · k + iη)(v2 · k − iη)
. (2.15)

4The momentum-space representation in eq. (2.15) is straightforwardly obtained from the eikonal Feyn-

man rules. By Schwinger parametrizing the eikonal propagators in eq. (2.15) and performing the resulting

Fourier transform, one recovers the position-space representation in eq. (2.1).
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Figure 3. Graphical representation of a cut of an eikonal diagram in its position-space represen-

tation. The black dots represent the emission and absorption of a lightlike gauge boson.

Figure 4. Graphical representation of cuts of eikonal diagrams in momentum space.

Such a cutting prescription was provided in ref. [21]. Here it was shown that the imaginary

part of the one-loop diagram in eq. (2.15) may be obtained by replacing the two eikonal

propagators by delta functions,

1

k · vi ± iη
cut−→ ∓ 2πi θ(v0

i ) δ(k · vi) . (2.16)

This prescription can be thought of as the eikonal limit of the standard Cutkosky rules. It is

illustrated in figure 4 above. More explicitly, applying the prescription (2.16) to eq. (2.15),

the imaginary part is determined as follows,

2i ImF (1) = (2π)2ig2CF θ(v
0
1)θ(v0

2)(v1 · v2)µ2ε

∫
dDk

(2π)D
δ(v1 · k)δ(v2 · k)

k2 + iη
. (2.17)

This representation of the imaginary part of the one-loop diagram motivates two remarks.

The first remark concerns the region of momentum space which gives rise to the imag-

inary part. Defining the light-cone variables k± ≡ 1√
2
(k0 ± k3) and choosing the Lorentz

frame in which the transverse components of the velocities vanish, viT = 0, the support of

the delta functions in eq. (2.17) is the region where the momentum of the exchanged gluon

is maximally transverse,

kT � k+ ∼ k− ≈ 0 , (2.18)

which was identified in ref. [21] as the Glauber region [70]. This agrees with the discussion

in section 1: the imaginary part of eikonal diagrams arises from the exchanges of Glauber-

region gluons.

The second remark concerns the physical interpretation of applying the momentum-

space cuts (2.16). By writing the delta functions in eq. (2.17) in terms of the plane-wave
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Figure 5. The non-vanishing momentum-space cuts of a non-planar three-loop ladder diagram.

The cuts require the evaluation of two-, three- and four-particle phase-space integrals.

representation δ(A) = 1
2π

∫∞
−∞ du eiuA and performing the Fourier transform we find

2i ImF (1) = C(1)θ(v0
1)θ(v0

2)µ2ε

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2
v1 · v2

[−(t1v1 − t2v2)2 + iη]1−ε
. (2.19)

We observe that the resulting integration bounds compared to those of the uncut diagram in

eq. (2.1) are extended according to
∫∞

0 dti −→
∫∞
−∞ dti. This state of affairs can be simply

understood on physical grounds: as the hard partons have been put on shell through the

cutting rule (2.16), they are now asymptotic states propagating from ti = −∞ to the

interaction point.

We see that the position- and momentum-space representations of eikonal diagrams

offer complementary points of view on the origin of their imaginary part. To summarize,

in the position-space representation, the imaginary part is seen to arise from the exchanges

of lightlike soft gauge bosons whose emission and absorption change the phases of the

hard-parton states. In contrast, in momentum space, the imaginary part (related to the

branch cut discontinuity through eq. (3.14)) arises from the two hard partons going on shell

and exchanging Glauber gluons. Thus, the position- and momentum-space representations

explain the origin of the imaginary part from the points of view of causality and unitarity,

respectively.

The momentum-space cutting prescription in eq. (2.16) has the conceptual advantage of

factoring eikonal diagrams into on-shell lower-loop and tree diagrams which in turn can be

computed as independent objects. However, the resulting cut diagrams involve integrations

over two-, three-, four-, . . . particle phase space, as illustrated in figure 5. In practice, the

evaluation of these phase-space integrals poses a substantial computational challenge which

limits the applicability of the cut prescription (2.16) for obtaining imaginary parts.

As we shall see in section 3, in position space, eikonal diagrams without internal

vertices take the form of iterated integrals. In this representation, their imaginary parts

can therefore be straightforwardly obtained by applying the principal-value formula (2.10)

recursively.
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3 Position-space cuts of eikonal diagrams without internal vertices

For completeness, in this section we review the derivation presented in ref. [1] of the imag-

inary part of L-loop eikonal diagrams without internal (i.e., three- or four-gluon) vertices

to the leading order in the dimensional regulator ε. We will interchangeably refer to these

diagrams as ladder-type diagrams. The basic observation is that in position space these

diagrams are iterated integrals, and as a result their imaginary part can be obtained by

decomposing the real-line integrations into principal-value and delta function contributions.

In position space, an arbitrary L-loop eikonal diagram without internal vertices is

composed of L soft-gluon propagators, interchangeably referred to here as rungs. Each

rung extends between the Wilson lines spanned by any two (possibly identical) external

four-velocities v1, . . . , vn where 1 ≤ n ≤ L + 1. For the jth rung we will denote these

four-velocities by v`j and vrj . We let ti,k denote the position of the kth attachment on

the Wilson line spanned by vi, counting from the hard interaction vertex and outwards, so

that 0 ≤ ti,1 < ti,2 < · · · < ti,Ni−1 < ti,Ni , where Ni denotes the total number of soft-gluon

attachments on the Wilson line. In addition, for the jth rung, we let the variables mj and

nj record the soft-gluon attachment numbers on the Wilson lines spanned by v`j and vrj ,

respectively. The L-loop eikonal diagram is then defined as the 2L-fold iterated integral

F (L) = C(L)(gµε)2L
L∏
j=1

∫ ∞
0

dt`j ,mjdtrj ,nj
(v`j · vrj )

∏n
i=1

∏Ni
k=0 θ(ti,k+1 − ti,k)

[−(t`j ,mjv`j − trj ,njvrj )2 + iη]1−ε
, (3.1)

where the kinematics-independent prefactor C(L) is determined by the color structure of the

diagram and where it is implied that ti,Ni+1 ≡ ∞ and ti,0 ≡ 0. Without loss of generality,

we will assume that any rungs with both endpoints attached to the same Wilson line have

been integrated out, and we suppress the resulting pole factors in ε. (The additional factors

produced by the integrations, involving epsilonic powers of the remaining variables, will not

be of importance here, as our aim is to extract the imaginary part of F (L) to the leading

order in ε.)

To extract the imaginary part of F (L) from the integral representation in eq. (3.1) it

turns out to be useful to perform a change of variables which leaves each soft propagator

dependent on a single variable. To this end, we adopt a change of variables introduced

in ref. [11]. The idea is to first express the attachment points of the jth rung in terms of

“polar” coordinates measuring the distance ρj to the cusp (in units of the infrared cutoff

1/Λ) and xj essentially measuring the emission angle of the soft gluon to the Wilson line,5

(
t`j ,mj
trj ,nj

)
= ρj

(
xj

1− xj

)
where

{
0 ≤ ρj <∞
0 ≤ xj ≤ 1 .

(3.2)

5For a given rung, the two endpoints may of course be referred to interchangeably as left or right.

However, for practical calculations, one particular choice may prove slightly more convenient. We refer to

section 4 for examples.
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After this change of variables, the diagram takes the form

F (L) = C(L)(gµε)2L
L∏
j=1

∫ ∞
0

dρj

ρ1−2ε
j

∫ 1

0
dxj P

[ε]
`jrj

(xj)Θ(ρ,x) , (3.3)

where the soft propagators are defined as

P
[ε]
ij (x) ≡ vi · vj[

−
(
xvi − (1− x)vj

)2
+ iη

]1−ε , (3.4)

and where the nesting of the integrations is encoded in Θ, defined through

Θ(ρ,x) ≡
n∏
i=1

Ni∏
k=0

θ(ti,k+1 − ti,k)
∣∣∣∣(t`j ,mj

trj,nj

)
=ρj

(
xj

1− xj

). (3.5)

We observe that the soft propagators’ dependence on the radial coordinates ρj has scaled

out in eq. (3.3), and that each propagator now depends only on a single variable xj . This

turns out to be particularly advantageous for the purpose of extracting the imaginary part

of the diagram, as this circumvents the need to divide a higher-dimensional domain of

integration into subdomains characterized by supporting a specific number of propagator

roots.

Now we extract the overall infrared divergence of the diagram by setting τ1 ≡ ρ1 and

then applying the following sequence of L− 1 substitutions(
τ1

ρ2

)
= τ2

(
y1

1− y1

)
, . . . ,

(
τL−1

ρL

)
= τL

(
yL−1

1− yL−1

)
with

{
0 ≤ τj <∞
0 ≤ yj ≤ 1 ,

(3.6)

where the variables τj have the dimension of length and the yj are dimensionless. The

L-loop eikonal diagram then becomes

F (L) = C(L)
L∏
j=1

∫ 1

0
dxj P

[ε]
`jrj

(xj)K(x1, . . . , xL) , (3.7)

where the infrared divergence of the diagram is now absorbed into the kernel

K(x1, . . . , xL) = g2L Γ(2Lε)

(
µ

Λ

)2Lε L−1∏
j=1

∫ 1

0
dyj y

−1+2jε
j (1− yj)−1+2εΘ

(
{y,x}

)
. (3.8)

Here Θ
(
{y,x}

)
denotes the result of applying the substitutions (3.6) to eq. (3.5). In

analogy with section 2, we have here regulated the infrared divergence in a gauge invariant

way through the exponential damping factor e−ΛτL with Λ � 1. Eq. (3.8) contains in

addition any potential ultraviolet subdivergences of the diagram (generated by the nesting

function Θ
(
{y,x}

)
).

Having brought the L-loop eikonal diagram in the form (3.7), we now turn to extract-

ing its imaginary part. Restricting our attention to the leading order in the dimensional

regulator ε, we will drop the dependence of the soft propagators on ε,

F (L) = C(L)
L∏
j=1

∫ 1

0
dxj P

[0]
`jrj

(xj)K(x1, . . . , xL) +O(ε−d+1) , (3.9)

where d denotes the degree of divergence of the diagram, F (L) ∼ 1
εd
× (finite).
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Figure 6. Schematic illustration of the formula (3.12) for the imaginary part of an eikonal diagram

without internal vertices. The black dots at the endpoints of a soft-gluon propagator denote that

the propagator has been cut — that is, replaced by a delta function. It is implied that the integrals

over the attachment points of uncut soft propagators are principal-value integrals. The relative

signs of the diagrams are determined by the factor ip−1; each individual diagram displayed here

corresponds to the action of the cutting operator (3.11) on the eikonal diagram.

To compute the imaginary part of eq. (3.9), we start by observing that eq. (3.8) is

manifestly purely real. As a result, the Feynman iη’s are the only source of imaginary

parts of eq. (3.9). Each of the xj-integration paths can therefore be decomposed into a

principal-value part and small semicircles around the propagator poles. Given that the

integrand takes purely imaginary values in the regions close to the poles and is real-valued

on the remaining domain of integration, the resulting 2L terms (which each involve L

integrations) will be either purely real or purely imaginary.

To collect the imaginary contributions, we define the cut propagator

∆ij(x) ≡ −π vi · vj δ
((
xvi − (1− x)vj

)2)
, (3.10)

and furthermore p-fold cutting operator

Cutxi1 ,...,xip F
(L) =

n∏
j=1

j 6=i1,...,ip

PV

∫ 1

0
dxj P (xj)

p∏
k=1

∫ 1

0
dxik ∆(xik)K(x1, . . . , xL) . (3.11)

The action of this operator is to replace the p propagators that depend on the specified

variables by delta functions and to place a principal-value prescription on the integrals over

the remaining variables. To simplify notation, we here dropped the indices on the (cut)

propagators: P (xj) ≡ P [0]
`jrj

(xj) and ∆(xj) ≡ ∆`jrj (xj).

The imaginary part of any L-loop eikonal diagram without internal vertices can then

be written, to the leading order in ε,

ImF (L) =

L∑
p=1
p odd

L∑
i1,...,ip=1
i1<···<ip

i p−1 Cutxi1 ,...,xip F
(L). (3.12)

This is the central formula of our approach [1]. The formula (3.12) is illustrated schemat-

ically for a generic ladder diagram in figure 6 above.

We note that the decomposition of the line integrations in eq. (3.9) into principal-

value and delta function contributions immediately shows that the imaginary part of the

integrated expression for the eikonal diagram will have transcendentality weight one less
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than the real part. This follows from the fact that the delta functions will map the rational

integrand to a rational expression after being integrated out. Thus, compared to the real-

part contribution with L principal-value integrals, the weight is dropped by one.

It is natural to ask about the relation of the imaginary part of the eikonal diagram to

the discontinuities in its various kinematic channels. This in turn leads us to ask for an

appropriate set of variables in terms of which to express integrated results. A good choice

of variables turns out to be given by the exponentials of the cusp angles,

χij ≡ e−γij , (3.13)

with the cusp angles defined through cosh γij = |vi · vj |. Expressed in terms of the χij-

variables, the eikonal diagram has branch cuts located on the real line and satisfies Schwarz

reflection, F (L)(χij) = F (L)(χij). As a result, the discontinuities of the diagram give rise

to the imaginary part through the relation

2i ImF (L)(χ) =

L∑
j=1

θ(v`j · vrj ) Disc
χ`jrj

F (L)(χ) . (3.14)

Here, the step functions account for the fact that the imaginary part has vanishing contri-

butions from channels with space-like kinematics v`j · vrj < 0. (This follows from the fact

that propagators stretched between mutually space-like eikonal lines have vanishing cuts,

as will be explained below eq. (3.16).) We will see an explicit example of this in section 4.3

where we study a diagram that depends on two distinct cusp angles in purely time-like as

well as mixed time- and space-like kinematics.

In section 4 we will work out examples of how eq. (3.12) is used in practice to compute

the imaginary part of ladder-type eikonal diagrams. To this end it will be useful to record

the following partial-fractioned expressions, setting χ ≡ χij ,

P
[0]
ij (x) =

R(χ)

2

(
1

x− ρ1 + iη
− 1

x− ρ2 − iη

)
∆ij(x) = −πR(χ)

2

(
δ(x− ρ1) + δ(x− ρ2)

)
, (3.15)

where the prefactor is the rational expression R(χ) = 1+χ2

1−χ2 = coth γij , and the denominator

roots are given by

(ρ1, ρ2) =


(

χ
χ+1 ,

1
χ+1

)
for vi · vj ≡ cosh γij > 0(

χ
χ−1 ,

1
1−χ

)
for vi · vj ≡ − cosh γij < 0 .

(3.16)

We note that in the upper case of eq. (3.16), the roots satisfy 0 < ρ1 <
1
2 < ρ2 < 1, whereas

in the lower case they satisfy ρ1 < 0 < 1 < ρ2. Since the delta functions in eq. (3.11) are

integrated over the interval [0, 1], we may thus infer that the eikonal diagram will only have

contributions to its imaginary part from channels with time-like kinematics vi · vj > 0, as

encoded in eq. (3.14). This is in agreement with the causality considerations of section 2.
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In section 4 we will make extensive use of the fact that the result for an eikonal diagram

in time-like kinematics can be immediately obtained from the space-like result by analytic

continuation of the cusp angle. To see this, let us first recall that the soft propagator takes

the same form (3.4) in space- and time-like kinematics when expressed in terms of vi · vj ,
owing to our convention that all velocity vectors are outgoing. However, once expressed in

terms of the relative angle γ ≡ γij , it takes the respective forms

P
[ε]
ij (x) =

{
− cosh γ

[
−x2−(1−x)2−2x(1−x) cosh γ

]−1+ε
for vi · vj ≡ − cosh γ < 0

cosh γ
[
−x2−(1−x)2+2x(1−x) cosh γ + iη

]−1+ε
for vi · vj ≡ cosh γ > 0 ,

(3.17)

where we dropped the iη in the space-like case, as the propagator roots are located outside

the range [0, 1] of x. Comparison of these expressions shows that we can map space-like to

time-like kinematics by means of the analytic continuation

− cosh γ −→ cosh γ + iη , (3.18)

or equivalently, in terms of χ ≡ e−γ ,

χ −→ − 1

χ
− iη . (3.19)

4 Examples

The aim of this section is to apply the formalism reviewed in section 3 to compute the

imaginary part of a number of ladder-type eikonal diagrams. The main point to be ad-

dressed here concerns the evaluation of the principal-value integrals involved in the p-fold

cuts in eq. (3.11).

4.1 The non-planar two-loop ladder diagram

As a first example we will consider the non-planar two-loop ladder diagram, illustrated

in figure 7 below. This diagram contains no ultraviolet subdivergence and therefore only

has a simple pole in the dimensional regulator ε. In agreement with the observations at

the end of section 3, the diagram will only have an imaginary part for time-like kinematics

v1 · v2 > 0. We therefore restrict our attention to this case. Since the diagram contains

only one cusp angle, we will drop the subscripts for convenience and define cosh γ ≡ v1 · v2

as well as χ ≡ e−γ .

The non-planar two-loop ladder diagram has the position-space representation

F (2) = C(2)µ4ε

∫ ∞
0

dt1,1 dt1,2 dt2,1 dt2,2 θ(t1,2 − t1,1) θ(t2,2 − t2,1) (v1 · v2)2

[−(t1,1v1 − t2,2v2)2 + iη]1−ε [−(t1,2v1 − t2,1v2)2 + iη]1−ε
, (4.1)

where the prefactor is given by C(2) = −g4CF
2N

Γ2(D/2−1)
16πD

. To compute the imaginary part of

this diagram, our first task is to write it in the form of eq. (3.7). This is achieved through

the change of variables in eq. (3.2), followed by that in eq. (3.6),(
t1,1
t2,2

)
= λ

(
x

1− x

)
,

(
t1,2
t2,1

)
= σ

(
y

1− y

)
followed by

(
λ

σ

)
= β

(
t

1− t

)
.

(4.2)

– 15 –



J
H
E
P
0
7
(
2
0
1
5
)
0
8
3

Figure 7. The non-planar two-loop ladder diagram.

After these transformations the diagram takes the desired form,

F (2) = C(2)

∫ 1

0
dx

∫ 1

0
dy P

[ε]
12 (x)P

[ε]
12 (y)K(x, y) , (4.3)

where the kernel K(x, y), upon the additional change of variable u = t
1−t , is given by

K(x, y) = µ4ε

∫ ∞
0

dβ e−Λβ

β1−4ε

∫ ∞
0

duu−1+2ε(u+ 1)−4ε θ

(
y

x
− u
)
θ

(
u− 1− y

1− x

)
. (4.4)

By comparing eqs. (4.1) and (4.3), we see that the effect of the first two transformations

of eq. (4.2) is to leave each soft propagator dependent on a single variable. The effect of

the last change of variable is to extract the overall infrared divergence of the diagram.

To facilitate the computation of the cuts in eq. (3.12) we will first evaluate the integral

K(x, y). The u-integral in eq. (4.4) may be performed in terms of the 2F1 hypergeometric

function. The primitive has the ε-expansion

f(u) =
u2ε

2ε
2F1(2ε, 4ε; 1 + 2ε;−u) =

u2ε

2ε

(
1 +O(ε2)

)
=

1

2ε
+ log u+O(ε) , (4.5)

and so K(x, y) has the ε-expansion

K(x, y) = Γ(4ε)

(
µ

Λ

)4ε

θ(y − x)

[
f

(
y

x

)
− f

(
1− y
1− x

)]
=

1

4ε

(
µ

Λ

)4ε

θ(y − x)

(
log

y

x
− log

1− y
1− x

)
+O(ε0) . (4.6)

Substituting this result for K(x, y) into eq. (4.3), we can write the non-planar two-loop

ladder diagram in the convenient form

F (2) =
C(2)

4ε

(
µ

Λ

)4ε

F (2), (4.7)

where F (2) is finite, given to leading order in ε as,

F (2) =

∫ 1

0
dx

∫ 1

0
dy P

[0]
12 (x)P

[0]
12 (y)

(
θ(y − x)− θ(x− y)

)
log

y

x
. (4.8)
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Here we have dropped the dependence of the soft propagators on ε and furthermore rewrit-

ten the integrand of F (2) to make its symmetry under x ←→ y manifest. (This was

achieved by changing variables (x, y) 7→ (1 − x, 1 − y) on the second term log 1−y
1−x arising

from eq. (4.6).)

As the prefactor of F (2) in eq. (4.7) is real, it factors out on both sides of eq. (3.12),

yielding the formula

ImF (2) = CutxF (2) + Cuty F (2), (4.9)

where we recall that Cutxi is defined in eq. (3.11) and replaces the propagator depending

on the specified variable by a delta function and places a principal-value prescription on

the integral over the remaining variable. The two cuts on the right-hand side are equal

because the integrand of eq. (4.8) is symmetric under the interchange of x and y. (This

also follows from the v1 ←→ v2 symmetry of the original diagram.) Thus, it suffices to

compute CutxF (2), given by

CutxF (2) =

∫ 1

0
dxPV

∫ 1

0
dy∆12(x)P

[0]
12 (y)

(
θ(y − x)− θ(x− y)

)
log

y

x
. (4.10)

Inserting the partial-fractioned expressions for ∆12(x) and P
[0]
12 (y) given in eq. (3.15) and

performing the trivial integral over x produces

CutxF (2) = −π
4
R(χ)2

2∑
k=1

PV

(∫ 1

ρk

dy −
∫ ρk

0
dy

)(
1

y − ρ1 + iη
− 1

y − ρ2 − iη

)
log

y

ρk
,

(4.11)

where the propagator roots ρ1,2 are given in the upper part of eq. (3.16).

We are now confronted with the task of evaluating principal-value integrals. As such

integrals do not immediately take the form of iterated integrals, our strategy for evaluation

will be to write them as differences of iterated integrals, which in turn are readily expressible

in terms of multiple polylogarithms. The basic observation is that the principal-value

integral equals the corresponding full integral minus the imaginary part of the latter, cf.

eq. (2.10).

As a simple illustration, let us consider the evaluation of the following principal-value

integral,

PV

∫ 1

0

dy

y − ρ1 + iη
=

∫ 1

0

dy

y − ρ1 + iη
− i Im

∫ 1

0

dy

y − ρ1 + iη
. (4.12)

The full integral evaluates to G(ρ1; 1) by definition, cf. eqs. (A.1)–(A.2). Its imaginary part

arises from the pole of the integrand and is extracted by localizing the integration variable,

Im

∫ 1

0

dy

y − ρ1 + iη
= −π

∫ 1

0
dy δ(y − ρ1) = −π , (4.13)

where we used in the last step that the pole is located inside the range of integration, in

agreement with the discussion below eq. (3.16). Thus we arrive at

PV

∫ 1

0

dy

y − ρ1 + iη
= G(ρ1; 1) + πi . (4.14)
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In this simple example we could have computed the real part more directly,

PV

∫ 1

0

dy

y − ρ1
= ReG(ρ1; 1) = Re log

(
1− 1

ρ1

)
= log

∣∣∣∣1− 1

ρ1

∣∣∣∣ = log

(
1

ρ1
− 1

)
. (4.15)

However, an extension of this direct approach to higher-weight cases requires the use of a

sequence of functional identities which in practice is case-dependent and thus not applicable

in a systematic way. In contrast, the above method relies only on a construction of the

imaginary part which can be derived systematically as demonstrated in appendix A.

Returning to eq. (4.11) and evaluating the principal-value integrals following the steps

outlined above, the result for the cut is readily expressed in terms of multiple polyloga-

rithms,

CutxF (2) = −π
4
R(χ)2

(
− 2G(ρ2, 0; 1) + 2G(ρ1, 0; 1)− 2G(0, ρ2; ρ2)− 2G(0, ρ2; ρ1)

+ 2G(0, ρ1; ρ2)+2G(0, ρ1; ρ1)+G(0; ρ2)G(ρ2; 1)+G(0; ρ1)G(ρ2; 1)

−G(0; ρ2)G(ρ1; 1)−G(0; ρ1)G(ρ1; 1)− 2πiG

(
0;
ρ1

ρ2

))
, (4.16)

where we refer to eqs. (A.1)–(A.2) for definitions. In this expression, the multiple poly-

logarithms depend on the propagator roots ρk(χ) through both their indices and their

arguments. This expression can in turn be rewritten in terms of polylogarithms with con-

stant indices by exploiting the Hopf algebra structure of multiple polylogarithms, which

encodes the plethora of functional identities within this class of functions [71–76]. Utilizing

this algebraic structure, we have implemented the steps required to achieve the desired

functional form as a general algorithm. We refer to appendix B for further details. The al-

gorithm leaves a simplified form of eq. (4.16) expressed in terms of harmonic polylogarithms

which, using eq. (A.5), can be simplified further into classical polylogarithms,

CutxF (2) = −πR(χ)2

(
−G(0, 1;χ) +G(0, 0;χ)−G(0,−1;χ)− 1

2
ζ2

)
= −π

2
R(χ)2

(
Li2(χ2) + log2 χ− ζ2

)
. (4.17)

With this result, we can now immediately obtain the imaginary part of the two-loop ladder

from eq. (4.9), recalling that the two cuts are equal. We find

ImF (2) = −πR(χ)2
(
Li2(χ2) + log2 χ− ζ2

)
, (4.18)

and we recall that multiplying the infrared pole cf. eq. (4.7) onto both sides of eq. (4.18)

gives the imaginary part of the original diagram F (2). This completes the evaluation of the

imaginary part of the non-planar two-loop ladder diagram to the leading order in ε.

As a crosscheck of the result in eq. (4.18), we can alternatively compute the imaginary

part of the non-planar two-loop ladder by evaluating the diagram for space-like kinematics

v1 · v2 < 0, in which case it will be purely real (cf. the discussion at the end of section 3),
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and subsequently perform the analytic continuation to time-like kinematics. We refer to

the end of section 3 for a more detailed discussion of analytic continuations.

To the leading order in ε, the two-loop ladder is given by eq. (4.8), although we must

bear in mind that for space-like kinematics the propagator roots ρk are given by the lower

case of eq. (3.16). Inserting into eq. (4.8) the expressions for P
[0]
12 given in eq. (3.15), the

diagram readily evaluates into multiple polylogarithms,

F̃ (2) =
R(χ)2

2

(
G(ρ1, 0, ρ1; 1)−G(ρ1, 0, ρ2; 1)−G(ρ2, 0, ρ1; 1) +G(ρ2, 0, ρ2; 1)

)
. (4.19)

The tilde on the left-hand side serves to remind us that the expression for the diagram

on the right-hand side is valid for space-like kinematics. We can use the algorithm in

appendix B to recast this representation in terms of polylogarithms with constant indices.

In fact, the two-loop ladder diagram can be expressed in terms of classical polylogarithms,6

F̃ (2) = R(χ)2
(
2G(0, 1, 0;χ)− 2G(0, 0, 0;χ) + 2G(0,−1, 0;χ)− ζ2G(0;χ)− ζ3

)
= R(χ)2

(
Li3(χ2)− logχLi2(χ2)− 1

3
log3 χ− ζ2 logχ− ζ3

)
. (4.20)

We can now find the result for the two-loop ladder diagram in time-like kinematics by

performing the analytic continuation χ → −1/χ − iη on eq. (4.20). Under the analytic

continuation, the rational function R(χ) picks up a minus sign, while the polylogarithms

transform according to

logχ→ − logχ− πi
Li2(χ2)→ −Li2(χ2)− 2 log2 χ+ 2ζ2 − 2πi logχ

Li3(χ2)→ Li3(χ2) +
4

3
log3 χ− 4ζ2 logχ+ 2πi log2 χ . (4.21)

Applying these replacements to eq. (4.20) we find the following result for the non-planar

two-loop ladder with time-like kinematics,

F (2) = R(χ)2

(
Li3(χ2)− logχLi2(χ2)− 1

3
log3 χ+ 5ζ2 logχ− ζ3

− iπ
(
Li2(χ2) + log2 χ− ζ2

))
. (4.22)

We observe that the imaginary part of eq. (4.22) agrees with the result found in eq. (4.18),

as expected. We conclude that the cutting prescription for the two-loop ladder stated in

eq. (4.9) produces the correct imaginary part. The cutting prescription (4.9) is illustrated

in figure 8.

6Note that in the representation in the second line of eq. (4.20), the polylogarithms and logarithms have

the respective arguments χ2 and χ. This form has the advantage of being particularly compact as well

as convenient for the purpose of performing the analytic continuation χ → −1/χ − iη which then maps

the arguments of the (poly)logarithms to the vicinity of the branch cuts. (In general, computer algebra

software, such as Mathematica augmented with the package HPL [77, 78], does not detect the 2π monodromy

of log(χ2) after tracing out a complete circle around the branch point.)
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Figure 8. Graphical representation of the cutting prescription for the non-planar two-loop ladder

stated in eq. (4.9). The black dots at the endpoints of a soft-gluon propagator indicate that the

propagator has been cut; i.e., replaced by a delta function. It is implied that the integrals over the

attachment points of uncut soft propagators are principal-value integrals.

Figure 9. A three-loop non-planar ladder diagram.

4.2 Three-loop non-planar ladder diagram

To demonstrate that the principal-value integrals involved in the p-fold cuts in eq. (3.11)

can indeed be evaluated in non-trivial cases, we consider in this section the three-loop

ladder diagram illustrated in figure 9. This diagram also represents an example of an

eikonal diagram with multiple-cut contributions to its imaginary part (in the case at hand,

a triple cut). As in section 4.1, we take cosh γ ≡ v1 ·v2 > 0, in order to have a non-vanishing

imaginary part, and set χ ≡ e−γ .

The position-space representation of the diagram in figure 9 takes the form

F (3) = C(3)µ6ε

∫ ∞
0

( 2∏
i=1

3∏
j=1

dti,j

) ∏2
i,j=1 θ(ti,j+1 − ti,j) (v1 · v2)3

D(t1,1, t2,3)D(t1,2, t2,1)D(t1,3, t2,2)
, (4.23)

where D(t1, t2) = [−(t1v1− t2v2)2 + iη]1−ε. To compute the imaginary part of this diagram

from eq. (3.12), our first task is to bring it into the form of eq. (3.7). This is achieved

through the changes of variables in eq. (3.2) (with t`j ,mj = t1,j), followed by the sequence of

substitutions in eq. (3.6), setting (x1, x2, x3) = (x, y, z) and (y1, y2) = (t, u) for convenience.

After these transformations, the diagram takes the form

F (3) = C(3)

∫ 1

0
dx dy dz P

[ε]
12 (x)P

[ε]
12 (y)P

[ε]
12 (z)K(x, y, z) , (4.24)
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where the kernel is given by

K(x, y, z) = Γ(6ε)

(
µ

Λ

)6ε ∫ 1

0
dt t−1+2ε(1− t)−1+2ε

∫ 1

0
duu−1+4ε(1− u)−1+2ε

× θ
(
z

y
− (1−t)u

1−u

)
θ

(
y

x
− t

1−t

)
θ

(
t u

1−u
− 1−z

1−x

)
θ

(
1−z
1−y

− (1−t)u
1−u

)
.

(4.25)

The arguments of the step functions simplify after rescaling the integration variables ac-

cording to t
1−t 7→ t and u

1−u 7→ u. As we are interested in computing the imaginary part of

F (3) only to the leading order in ε, we may set ε to zero in the u-integral. Performing the

t-integral in terms of hypergeometric functions and subsequently expanding in ε, we find

the expression

K(x, y, z) =
1

6ε

(
µ

Λ

)6ε[
θ(y − z)θ(z − x)

1

2
log2

(
1− x
x

z

1− z

)
+ (y ←→ z)

]
≡ 1

6ε

(
µ

Λ

)6ε

K(x, y, z) , (4.26)

valid to the leading order in ε. We observe that eq. (4.26) is symmetric under the inter-

change of y and z; hence the integrand of the full diagram in eq. (4.24) is as well. (In other

words, interchanging the two parallel gluon lines in figure 9 leaves the diagram invariant.)

This observation implies that Cuty F
(3) = Cutz F

(3) and thereby reduces the number of

independent cuts to be computed.

Substituting eq. (4.26) into eq. (4.24) we can write the non-planar three-loop ladder

diagram in the convenient form

F (3) =
C(3)

6ε

(
µ

Λ

)6ε

F (3), (4.27)

where F (3) is finite, given to leading order in ε as

F (3) =

∫ 1

0
dx dy dz P

[0]
12 (x)P

[0]
12 (y)P

[0]
12 (z)K(x, y, z) . (4.28)

As the prefactor of F (3) in eq. (4.27) is real, it factors out on both sides of eq. (3.12),

yielding the formula

ImF (3) = CutxF (3) + Cuty F (3) + Cutz F (3) − Cutx,y,z F (3). (4.29)

The appearance of a multiple-cut contribution represents a new feature for diagrams with

more than two loops. Incidentally, the diagram F (3) is the only three-loop ladder diagram

with an O
(

1
ε

)
divergence that has a non-vanishing triple cut. This point is illustrated

in figure 10. The diagram F (3) therefore provides an excellent example to demonstrate a

multiple-cut contribution.

Let us start by evaluating this triple cut: as all three integrations are localized by delta

functions, the cut is immediately computed,

Cutx,y,z F (3) =

∫ 1

0
dx dy dz∆12(x) ∆12(y) ∆12(z)K(x, y, z)

= −π
3

8
R(χ)3

2∑
k,l,m=1

K(ρk, ρl, ρm) . (4.30)

– 21 –



J
H
E
P
0
7
(
2
0
1
5
)
0
8
3

Figure 10. Triple cut of the two three-loop diagrams that have a single pole divergence. In (a) the

non-vanishing triple cut of F (3) is illustrated by the exchange of three lightlike gluons. In contrast,

(b) shows graphically that the triple cut of the maximally crossed diagram vanishes, because the

three gluons cannot simultaneously be aligned with the light cone (i.e., go on shell).

In the second line we inserted the form of ∆12 given in eq. (3.15) and then integrated out

the delta functions. Now observe that K(ρk, ρl, ρm), which is implicitly defined in eq. (4.26),

is non-zero if and only if (k, l,m) = (1, 2, 2). Indeed, in the first term of eq. (4.26), the

logarithm is non-zero only when k 6= m, while the step functions dictate that ρk ≤ ρm ≤ ρl.
Since ρ1 < ρ2, we must therefore have k = 1 and l = m = 2. An identical argument applies

to the second term of eq. (4.26). We arrive at the simple result

Cutx,y,z F (3) = −π
3

2
R(χ)3 log2 χ . (4.31)

This completes the evaluation of the triple-cut contribution to eq. (4.29).

We now turn to the single cuts. We will focus on the contribution CutxF (3), the

remaining cuts being computed completely analogously. (Also recall from the discussion

below eq. (4.26) that Cuty F (3) = Cutz F (3), so that only one additional single cut needs

to be computed.) Using the partial-fractioned expressions for ∆12 and P
[0]
12 in eq. (3.15)

and integrating out the delta function we find, dropping ±iη for notational convenience,

Cutx F (3) =

∫ 1

0

dxPV

∫ 1

0

dyPV

∫ 1

0

dz∆12(x)P
[0]
12 (y)P

[0]
12 (z)K(x, y, z)

= −π
8
R(χ)3

2∑
k=1

PV

∫ 1

ρk

dy

(
1

y−ρ1
− 1

y−ρ2

)
PV

∫ y

ρk

dz

(
1

z−ρ1
− 1

z−ρ2

)
log2

(
1−ρk
ρk

z

1−z

)
,

(4.32)

exploiting the residual y ←→ z symmetry of the integrand.

The principal-value integrals may be evaluated as the corresponding full integrals minus

the imaginary part of the latter. Formulas of imaginary parts of multiple polylogarithms

are listed up to weight four in appendix A. The first PV integral gives rise to step functions

involving the variables ρ1, ρ2 and y. Splitting the y-integral in the k = 1 term into two
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integrals with the respective domains [ρ1, ρ2] and [ρ2, 1] allows all step functions to be

resolved. Ultimately, the cut is found to evaluate into the expression

CutxF (3) =
π

2
R(χ)3

[
− 1

3
log4 χ+ log2 χ

(
H2(χ2)− 3ζ2

)
− 2 logχ

(
H3(χ2)− ζ3

)
+H2,2(χ2) + 2H4(χ2)− ζ2H2(χ2)− 1

4
ζ4

]
. (4.33)

This result is expressed in terms of harmonic polylogarithms, defined through eq. (A.6).

Similarly, the y- and z-cuts are found to take the form

Cuty F (3) = Cutz F (3) =
π

4
R(χ)3

[
− 1

3
log4 χ+ log2 χ

(
H2(χ2) + 3ζ2

)
+ 2H3,1(χ2) +H2,2(χ2)− ζ2H2(χ2) +

5

4
ζ4

]
. (4.34)

Combining all single and triple cuts according to eq. (4.29) yields the following imagi-

nary part

ImF (3) = πR(χ)3

[
− 1

3
log4 χ+ log2 χ

(
H2(χ2) + 3ζ2

)
− logχ

(
H3(χ2)− ζ3

)
+H3,1(χ2) +H2,2(χ2) +H4(χ2)− ζ2H2(χ2) +

1

2
ζ4

]
. (4.35)

As a crosscheck of this result, we can alternatively compute the imaginary part of the

three-loop ladder by evaluating the diagram for space-like kinematics v1 · v2 < 0, in which

case it will be purely real (cf. the discussion at the end of section 3), and subsequently

perform the analytic continuation to time-like kinematics.

To the leading order in ε, the three-loop ladder is given by eq. (4.28), although we

must bear in mind that for space-like kinematics the propagator roots ρk are given by the

lower case of eq. (3.16). Inserting into eq. (4.28) the expressions for P
[0]
12 and K(x, y, z)

given in eqs. (3.15) and (4.26), respectively, the diagram is directly expressible in terms of

multiple polylogarithms,

F̃ (3) =
R(χ)3

4

∑
i,j,k,l,m=0,1

(−1)i+j+k+l+mG(ρi+1, ρj+1, k, l, ρm+1; 1) , (4.36)

where the tilde on the left-hand side indicates that the diagram is computed for space-like

kinematics. We can use the algorithm in appendix B to recast this representation in terms

of polylogarithms with constant indices. In fact, the three-loop ladder diagram can be

expressed in terms of harmonic polylogarithms,

F̃ (3) =
R(χ)3

4

[
− 4

15
log5 χ+

4

3
log3 χ

(
H2(χ2)− ζ2

)
− 2 log2 χ

(
H3(χ2)− ζ3

)
+ 4 logχ

(
H3,1(χ2) +H2,2(χ2) +H4(χ2) + ζ2H2(χ2) +

3

2
ζ4

)
− 6H4,1(χ2)− 6H3,2(χ2)− 4H2,3(χ2)− 6H5(χ2)− 2ζ2H3(χ2)

+ 4ζ3H2(χ2) + 3ζ5 + 2ζ2ζ3

]
. (4.37)
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We have cross-checked this expression with previous results in the literature, finding agree-

ment.7

We can now find the result for the three-loop ladder diagram in time-like kinematics

by performing the analytic continuation χ → −1/χ − iη on eq. (4.37). Under the ana-

lytic continuation, the rational function R(χ) picks up a minus sign, while polylogarithms

transform according to

logχ→ log(−1/χ− iη) = − logχ− πi ,
H~a(χ

2)→ H~a(1/χ
2 + iη) . (4.38)

Thus, all harmonic polylogarithms are evaluated slightly above the branch cut [1,∞). They

were subsequently expressed in terms of H~a(χ
2) and logχ using the Mathematica package

HPL [77, 78]. In this way, we find the following result for the three-loop ladder with time-like

kinematics,

F (3) = −R(χ)3

4

[
4

15
log5 χ− 4

3
log3 χ

(
H2(χ2) + 11ζ2

)
+ 2 log2 χ

(
H3(χ2)− ζ3

)
− 4 logχ

(
H3,1(χ2) +H2,2(χ2) +H4(χ2)− 5ζ2H2(χ2)− 27

2
ζ4

)
+ 6H4,1(χ2)+6H3,2(χ2)+4H2,3(χ2)+6H5(χ2)−10ζ2H3(χ2)−4ζ3H2(χ2)

− 3ζ5 + 10ζ2ζ3

+ 4πi

(
1

3
log4 χ− log2 χ

(
H2(χ2) + 3ζ2

)
+ logχ

(
H3(χ2)− ζ3

)
−H3,1(χ2)−H2,2(χ2)−H4(χ2) + ζ2H2(χ2)− 1

2
ζ4

)]
. (4.39)

We observe that the imaginary part of eq. (4.39) agrees with the result found in eq. (4.35),

as expected. We conclude that the cutting prescription for the three-loop ladder stated in

eq. (4.29) produces the correct imaginary part. The cutting prescription (4.29) is illustrated

in figure 6.

4.3 Two-loop web with three Wilson lines

The formalism of section 3 allows us to compute the imaginary part of eikonal diagrams

only to the leading order in ε. This appears to limit the applicability of the approach, but

in practice a large class of diagrams have only simple poles in ε, and the coefficient of the
1
ε pole of the correlator of Wilson lines defines physical observables of interest, such as for

example the cusp anomalous dimension (i.e., the anomalous dimension of the correlator

7More specifically, adding the diagram in figure 9 to the maximally-crossed three-loop ladder, which we

have computed by the same methods, we find agreement with eq. (A.1) of ref. [28] (in its published version;

or alternatively eq. (73) of the corresponding arXiv e-print (v2)). Furthermore, the two color structures of

the (3, 3) web are linear combinations of these two diagrams, according to eq. (4.26) in ref. [39]. Inserting

our results for the two diagrams, we recover the color structures in their eqs. (4.29) and (4.33) (where the

basis functions are given explicitly in appendix A), thereby cross-checking our results for both diagrams

individually, and in particular our result in eq. (4.37) for the three-loop non-planar ladder.
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Figure 11. The two diagrams constituting the (1, 2, 1) web. The antisymmetric combination of

the two diagrams is not captured by exponentiation of the one-loop subdiagrams, and this linear

combination of the diagrams, defining the web, appears in the exponent. Each separate diagram

diverges as O( 1
ε2 ), but the leading divergences conspire to cancel in the web, leaving an O( 1

ε )

divergence.

of two Wilson lines, cf. eq. (2.8)). As it turns out, the cusp anomalous dimension can

be expressed entirely in terms of diagrams with simple poles in ε (once the diagrams are

expressed in terms of the renormalized coupling gR). We observed this already for Abelian

gauge theories in eq. (2.7), but the statement extends to the case of non-Abelian gauge

theories as well. This owes to the non-Abelian exponentiation theorem for two Wilson

lines [4, 5] which states that the two-line correlator can be written as the exponential of

the sum of webs, defined as the subclass of diagrams which are eikonal-line two-particle

irreducible. The webs appear in the exponent with their color prefactors appropriately

modified to account for the color factors of the complete set of diagrams arising from

expanding the exponential.

Over the past four years, non-Abelian exponentiation has been shown to generalize to

correlators of an arbitrary number of Wilson lines [8–14]. In this section we will study the

interplay of this remarkable theorem with the formalism of section 3.

The statement of non-Abelian exponentiation in the multi-line case requires a new

classification of the set of diagrams which appear in the exponent. In the multi-line case,

a web is defined as a collection of diagrams which are mutually related by permutations

of the order of gluon attachments, acting on each Wilson line separately. As an example,

consider the (1, 2, 1) web in figure 11, whose imaginary part we will turn to shortly.

The labels (1, 2, 1) refer to the number of gluon attachments on each eikonal line,

and the two diagrams are related by permutations of the attachment points, where the

permutations act on each line separately. The individual diagrams in figure 11 are clearly

not eikonal-line 2PI diagrams. However, the contributions of these diagrams are not entirely

reproduced by exponentiation of their one-loop subdiagrams. Indeed, the sum of the one-

loop subdiagrams spanned by the pairs of lines {v1, v2} and {v2, v3} will appear in the

exponent, but upon expanding the exponential to second order, these subdiagrams only

reproduce the symmetric linear combination of the two-loop diagrams. To compensate, the
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antisymmetric linear combination of the two-loop diagrams, which defines the web, must

be added to the exponent as a contribution. Denoting the color and kinematical factors of

the diagrams in figure 11 as Ca,b and Fa,b, the web is accordingly defined as

W
(2)
(1,2,1) =

(
Ca, Cb

)( 1
2 −

1
2

−1
2

1
2

)(
Fa

Fb

)
=

1

2
(Ca − Cb)(Fa −Fb) . (4.40)

We can now state the general non-Abelian exponentiation theorem [8–14]. Recalling the

definition in eq. (1.1) of the Wilson line Φv spanned by the four-velocity vµ, the statement

is that the correlator of an arbitrary number of Wilson lines is given as the exponential of

the sum of webs, 〈
Φv1 · · ·Φvn

〉
= exp

( ∑
i∈{webs}

CTi RiFi
)
, (4.41)

where each web i contributes to the exponent through the color Ci and kinematical Fi
factors of its constituent diagrams, weighted by means of the web mixing matrix Ri in

analogy with eq. (4.40). The web mixing matrices can be computed systematically by

means of the replica trick of statistical mechanics [8, 79]. Among several properties they

satisfy the zero-sum-row condition
∑

bRab = 0 which ensures that the symmetric linear

combination of the constituent diagrams is projected out [10].

The mixing matrices satisfy an additional weighted zero-sum column condition which

ensures that the leading divergence of the constituent diagrams of a web conspire to cancel

when the diagrams are added. This is a general feature of webs, ultimately following

from their renormalization properties [8, 9, 11], leaving in many cases a web with an O(1
ε )

divergence. As a result, webs are particularly amenable to the formalism of section 3. It

is here important to keep in mind that the cutting prescription should be applied to an

entire web rather than its constituent diagrams separately, as the separate imaginary parts,

computed to leading order in ε, will cancel.

To illustrate the procedure in detail, we turn to the web in figure 11 and compute

its imaginary part. In analogy with sections 4.1 and 4.2, we take cosh γ12 ≡ v1 · v2 > 0

and cosh γ23 ≡ v2 · v3 > 0, in order to have a non-vanishing contribution to the imaginary

part from both kinematical channels, and set χ ≡ e−γ12 and ψ ≡ e−γ23 . Our first task

will be to show that the leading O( 1
ε2

) divergences of the individual diagrams conspire

to cancel, leaving an O(1
ε ) divergence. We will then apply the cutting prescription of

eqs. (3.10)–(3.12) directly to the web written in a form with a manifest O(1
ε ) divergence.

Let us start by considering diagram 6a in figure 11. Its kinematical factor is given by

Fa = C(2) µ4ε

∫ ∞
0

dt1,1 dt2,1 dt2,2 dt3,1 θ(t2,2 − t2,1) (v1 · v2) (v2 · v3)

[−(t1,1v1 − t2,2v2)2 + iη]1−ε[−(t2,1v2 − t3,1v3)2 + iη]1−ε
, (4.42)

where C(2) contains coupling constants etc., but no color factor. In analogy with sections 4.1

and 4.2 our first task is to write this expression in the form of eq. (3.7). This is achieved

through the changes of variables in eq. (3.2) (with t`j ,mj = t2,3−j), setting (x1, x2) = (x, y)

for convenience.
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After these transformations, the kinematical factor takes the form

Fa = C(2)

∫ 1

0
dx dy P

[ε]
12 (x)P

[ε]
23 (y)K(x, y) , (4.43)

where the kernel is given by

K(x, y) = µ4ε

∫ ∞
0

dρ1 dρ2

(ρ1ρ2)1−2ε
θ(ρ1x− ρ2y)

=
Γ(4ε)

2ε

(
µ

Λ

)4ε[
u2ε

2F1(2ε, 4ε; 1 + 2ε;−u)
]u=∞
u=y/x

. (4.44)

The result for K(x, y) was obtained by applying the substitution in eq. (3.6) and performing

the remaining integrations in complete analogy with section 4.1. The second diagram of

the web, Fb, differs only in the step function which reads θ(ρ2y− ρ1x), changing the lower

integration bound in eq. (4.44) from y/x to x/y. After expanding the gamma function and

the hypergeometric function in ε, we thus find the kinematical factor of the (1, 2, 1) web to

take the form

Fa −Fb =
C(2)

8ε2

(
µ

Λ

)4ε ∫ 1

0
dx dy P

[ε]
12 (x)P

[ε]
23 (y)

[(
x

y

)2ε

−
(
y

x

)2ε](
1 +O(ε2)

)
. (4.45)

Upon expanding [ · · · ] in ε, we observe that the leading poles of the separate diagrams

cancel, leaving an O(1
ε ) divergence, in agreement with the discussion above.

Factoring out the remaining pole, we can write the web in the convenient form

W
(2)
(1,2,1) =

Ca − Cb

2

C(2)

2ε

(
µ

Λ

)4ε

F (2)
(1,2,1) , (4.46)

where F (2)
(1,2,1) is finite and given to the leading order in ε by

F (2)
(1,2,1) =

∫ 1

0
dx dy P

[0]
12 (x)P

[0]
23 (y) log

x

y
. (4.47)

As the prefactor of F (2)
(1,2,1) in eq. (4.46) is real, it factors out on both sides of eq. (3.12),

yielding the formula

ImF (2)
(1,2,1) = CutxF (2)

(1,2,1) + Cuty F (2)
(1,2,1) . (4.48)

More explicitly, by inserting the definition of the operator Cutxi in eq. (3.11), we have

ImF (2)
(1,2,1) =

∫ 1

0
dx PV

∫ 1

0
dy∆12(x)P

[0]
23 (y) log

x

y
+ PV

∫ 1

0
dx

∫ 1

0
dy P

[0]
12 (x) ∆23(y) log

x

y
.

(4.49)

We observe that the second term equals minus the first term with the two cusp angles and

integration variables interchanged, making the imaginary part of the web antisymmetric

under the interchange γ12 ←→ γ23. (The antisymmetry is of course inherited from the
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full web which has this property by construction.) This observation allows us to write the

imaginary part in the manifestly antisymmetric form

ImF (2)
(1,2,1) = J(χ, ψ)− J(ψ, χ) , (4.50)

where the auxiliary function is defined as the first term of eq. (4.49),

J(χ, ψ) =

∫ 1

0
dx PV

∫ 1

0
dy∆12(x)P

[0]
23 (y) log

x

y
. (4.51)

Evaluation of the imaginary part of the web thus reduces to the evaluation of the inte-

gral J(χ, ψ). The latter can be computed by recalling the partial-fractioned expressions

for ∆12 and P
[0]
23 given in eq. (3.15) which in the present notation read

∆12(x) = −πR(χ)

2

(
δ
(
x− ρ1(χ)

)
+ δ
(
x− ρ2(χ)

))
,

P
[0]
23 (y) =

R(ψ)

2

(
1

y − ρ1(ψ) + iη
− 1

y − ρ2(ψ)− iη

)
, (4.52)

where we wrote out the expressions explicitly to emphasize their dependence on the two

distinct kinematical invariants χ and ψ.

Integrating out the delta functions in eq. (4.51) leaves one principal-value integral to be

evaluated. This integral is computed as the corresponding full integral minus its imaginary

part, as explained in section 4.1.8 In this way we find

J(χ, ψ) = −π
4
R(χ)R(ψ)

2∑
k=1

PV

∫ 1

0
dy

(
1

y − ρ1(ψ) + iη
− 1

y − ρ2(ψ)− iη

)
log

(
ρk(χ)

y

)
= −π

4
R(χ)R(ψ)

(
− 4Li2(−ψ) + log2 ψ − 4 logψ

(
log(ψ + 1)− log(χ+ 1)

)
− 2 logχ logψ − 2ζ2

)
. (4.53)

Upon the antisymmetrization in eq. (4.50) the terms on the last line of eq. (4.53) cancel,

and we find the following result for the imaginary part of the (1, 2, 1) web,

ImF (2)
(1,2,1) = −π R(χ)R(ψ)

(
Li2(−χ)− Li2(−ψ)− 1

4
(log2 χ− log2 ψ)

+ (logχ+ logψ)
(

log(χ+ 1)− log(ψ + 1)
))
. (4.54)

As a crosscheck of this result, we can alternatively compute the imaginary part of the web

by evaluating the diagram for space-like kinematics v1 ·v2 < 0 and v2 ·v3 < 0, in which case

it will be purely real (cf. the discussion at the end of section 3), and subsequently perform

the analytic continuation to time-like kinematics.

To the leading order in ε, the web is given by eq. (4.47), although we must bear in

mind that for space-like kinematics the propagator roots ρk are given by the lower case of

8To proceed we assume, without loss of generality, that ψ < χ. This fixes ρ1(χ) < ρ1(ψ) < ρ2(ψ) < ρ2(χ),

which allows the step functions in eqs. (A.22)–(A.25) to be resolved.
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eq. (3.16). We now insert into eq. (4.47) the expressions for P
[0]
12 given in eq. (3.15) and

perform the integrals in analogy with the calculations in eqs. (4.19)–(4.20) for the case of

the non-planar two-loop ladder. This leads to the following result for the web in space-like

kinematics,

F̃ (2)
(1,2,1) = R(χ)R(ψ)

(
L(ψ) logχ− L(χ) logψ

)
, (4.55)

where we introduced the auxiliary function

L(χ) = −Li2(1− χ)− 1

4
log2 χ . (4.56)

These expressions are consistent with results previously obtained in the literature, see for

example eq. (3.11) in ref. [38], as well as references therein. We can now obtain the result

for the web in time-like kinematics by performing the analytic continuations χ→ −1/χ−iη
and ψ → −1/ψ−iη on eq. (4.55). Under the analytic continuation, the functions appearing

in eq. (4.55) transform as

R(z)→ −R(z)

log z → − log z − πi

L(z)→ −Li2(−z)− log z log(z + 1) +
1

4
log2 z − 1

2
ζ2

− πi
(

log(z + 1)− 1

2
log z

)
. (4.57)

Upon analytic continuation in χ and ψ we thus find the following result for the web with

time-like kinematics,

F (2)
(1,2,1) = R(χ)R(ψ)

[
− iπ

(
Li2(−χ)− 1

4
log2 χ+ (logχ+ logψ) log(χ+ 1)

)
+ logχLi2(−ψ)− (logχ logψ − 6ζ2) log(χ+ 1)

+
1

4
(logχ logψ − 10ζ2) logχ

]
− (χ←→ ψ) . (4.58)

We observe that the imaginary part of eq. (4.58) agrees with the result found in eq. (4.54),

as expected. We conclude that the cutting prescription for the two-loop web stated in

eq. (4.48) produces the correct imaginary part. The graphical representation of the cutting

prescription (4.48) is similar to that in figure 8, and we omit it here.

In the above we have computed the imaginary part of the web with time-like kine-

matics. As the web depends on two distinct angles, we may also consider the diagram in

the case of mixed time- and space-like kinematics, for example cosh γ12 ≡ v1 · v2 > 0 and

cosh γ23 ≡ −v2 ·v3 > 0.9 A natural question is then whether also in this case the imaginary

part is computed correctly by the formalism of section 3. As we shall see shortly, the for-

malism readily applies, with the one difference that the imaginary part has no contribution

from the ψ-channel, as propagators stretched between mutually space-like eikonal lines

9The opposite-type kinematics v1 · v2 < 0 and v2 · v3 > 0 is of course equivalent by the antisymmetry of

the web under the interchange γ12 ←→ γ23 of the cusp angles.
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have vanishing cuts. Put differently, the discontinuity in the ψ-channel does not contribute

to the imaginary part, cf. eq. (3.14).

Returning to the formula for the imaginary part in the explicit form (4.49), we observe

that in the above case of mixed time- and space-like kinematics, the roots of the propagator

P
[0]
23 (y) lie outside the range of integration, cf. the remarks below eq. (3.16). As a result,

the second term in eq. (4.49) vanishes and in the first term the principal-value prescription

may be dropped,

ImF (2)
(1,2,1) =

∫ 1

0
dx dy∆12(x)P

[0]
23 (y) log

x

y
. (4.59)

After inserting eq. (4.52) and integrating out the delta functions, the imaginary part is

readily expressed in terms of multiple polylogarithms; these in turn can be simplified into

classical polylogarithms, yielding

ImF (2)
(1,2,1) =

π

4
R(χ)R(ψ)

(
− 2G

(
ρ2(ψ), 0; 1

)
+ 2G

(
ρ1(ψ), 0; 1

)
+G

(
0; ρ2(χ)

)
G
(
ρ2(ψ); 1

)
+G

(
0; ρ1(χ)

)
G
(
ρ2(ψ); 1

)
−G

(
0; ρ2(χ)

)
G
(
ρ1(ψ); 1

)
−G

(
0; ρ1(χ)

)
G
(
ρ1(ψ); 1

))
= πR(χ)R(ψ)

(
Li2(ψ)−logψ

(
1

4
logψ−log(1−ψ)+log(χ+1)− 1

2
logχ

)
−ζ2

)
.

(4.60)

Using eq. (4.57) it is straightforward to verify that this result agrees with the imaginary

part acquired by eq. (4.55) upon the analytic continuation χ → −1/χ − iη. We conclude

that the formula (3.12) reproduces the correct imaginary part of the web also for mixed

time- and space-like kinematics, as expected.

5 Position-space cuts of eikonal diagrams with internal vertices

In this section we turn to the application of the formalism of ref. [1] to diagrams with

internal (i.e., three- and four-gluon) vertices. Here we provide details on the calculation

of the imaginary part of the diagram involving a three-gluon vertex connected to three

Wilson lines, as illustrated in figure 12.

The integrated result for the diagram in figure 12 was first obtained in refs. [34, 35]

using a Mellin-Barnes representation of the two loop-momentum integrals. In terms of the

cusp angles γij , defined through cosh γij = −vi · vj , it is given by

F̃3g = −ifabcTa
1T

b
2T

c
3

2

ε

(
αs
4π

)2 3∑
i,j,k=1

εijk γ
2
ijγki coth γki . (5.1)

This expression is valid for an unphysical configuration with space-like kinematics for all

pairs of Wilson lines, i.e. vi ·vj < 0, as indicated by the tilde on F̃3g. In agreement with our

observations in section 2, F̃3g has no imaginary part. In contrast, in a physical configuration

of massive Wilson lines, each velocity is constrained to the unit three-hyperboloid, either
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Figure 12. The non-planar two-loop three-gluon vertex diagram.

Figure 13. Physical configurations for three distinct Wilson-line velocities: (a) one incoming and

two outgoing lines, or (b) three outgoing lines. Configurations related by time-reversal are omitted.

In this section we compute the imaginary part of the three-gluon vertex diagram in the physical

configuration (b).

inside the future light cone or inside the past light cone. There are two inequivalent physical

configurations, shown in figure 13. In both configurations at least one pair of Wilson lines

is time-like separated, i.e. vi · vj > 0, leading to a non-vanishing imaginary part.

In the following we consider the configuration in figure 13(b), where all Wilson lines

correspond to outgoing states, such that vi · vj > 0 for each pair of Wilson lines. The

analytic result for such time-like kinematics, denoted by F3g, is obtained from the space-

like expression F̃3g in eq. (5.1) by analytic continuation γij → iπ − γij for all i 6= j (cf.

eq. (3.18)). The imaginary part of the resulting expression is

ImF3g = −fabcTa
1T

b
2T

c
3

(
αs
4π

)2 2

ε

3∑
i,j,k=1

εijk (γ2
ijγki − 2π2γij) coth γki . (5.2)

In the remainder of this section our task is to compute this imaginary part with our

formalism. As in section 3 we first need to extract the leading divergence of F3g in its

position-space representation. The three-gluon vertex diagram has a only a simple pole in

ε. This divergence is extracted from the radial integral over the three-gluon vertex position.

Having extracted the leading divergence, the diagram can be written as 1
ε × (finite). We
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then apply position-space cuts to the finite function. The one-dimensional integrals along

the Wilson lines are then trivially performed using the delta functions arising from the

cut. The remaining integrations over the direction of the three-gluon vertex are performed

numerically, after which the final result is compared to the analytic expression in eq. (5.2).

We start by writing down the position-space representation of F3g. It reads10

F3g = −fabcTa
1T

b
2T

c
3

(
αs
4π

)2 4

π2
µ4ε

∫
dDx

r4−6ε

3∑
i,j,k=1

εijk vi ·vj ζi ζk
(
∂

∂ζi
g(ζi, ε)

)
g(ζj , ε) g(ζk, ε) .

(5.3)

Here the three-gluon vertex position x is integrated over all of Minkowski space. In the

integrand x is decomposed into a radial distance r and direction u, via xµ = r uµ, such

that u2 = 1 for time-like x and u2 = −1 for space-like x. Dot products between u and the

Wilson line velocities are denoted by ζi = vi · u. The one-dimensional integrals along the

Wilson lines are contained in the functions g(ζi, ε), which are defined as

g(ζi, ε) =

∫ ∞
0

dxi
[−(u2 − 2xi ζi + x2

i ) + iη]1−ε
. (5.4)

After a change of variables to hyperspherical coordinates in eq. (5.3), the radial integral

contains the overall divergence11 and may easily be performed, yielding a factor of 1
4ε .

Restricting attention to the leading order in ε allows us to set ε = 0 in the finite function

F3g, yielding

F3g = −fabcTa
1T

b
2T

c
3

(
αs
4π

)2 1

π2 ε
F3g ,

F3g =

∫
R̃P

1,2
d3u

3∑
i,j,k=1

εijk vi · vj ζi ζk
(
∂

∂ζi
g(ζi, 0)

)
g(ζj , 0) g(ζk, 0) . (5.5)

The integration domain for the three-gluon vertex direction u is R̃P
1,2
≡ H3

+ ∪H3
− ∪ dS+

3 ∪
dS−3 , the union of the upper and lower sheets of the unit three-hyperboloid and three-

dimensional de Sitter space, defined by

H3
± = {u ∈ R1,3 : u2 = 1 and u0 ≷ 0} ,

dS±3 = {u ∈ R1,3 : u2 = −1 and u0 ≷ 0} .
(5.6)

Having written the three-gluon vertex diagram in the form in eq. (5.5), we are ready to

apply our formalism to obtain the imaginary part of F3g from its cuts. This in turn gives

the imaginary part of the full diagram F3g, as they are proportional up to a real constant.

The imaginary part of F3g is computed from the formula in eq. (3.12), as illustrated

schematically in figure 14. The cut propagators stretching between the three-gluon vertex

and the Wilson lines take the obvious form ∆i(xi) = −π δ(u2 − 2xi ζi + x2
i ), rather than

10See ref. [80] for the corresponding position-space representation of this diagram in Euclidean space.
11This divergence is regulated by including an exponential damping factor in the radial integral (cf.

eq. (2.3)).
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Figure 14. Graphical representation of position-space cuts applied to a diagram with an internal

vertex.

eq. (3.10) for propagators connecting two Wilson lines. In order to resolve the support

of these delta functions in the different subregions of R̃P
1,2

it is convenient to introduce

variables yi that are equal to ζi, possibly up to a sign depending on the location of u.

Explicitly, we let yi = ζi for u ∈ H3
+ ∪ dS+

3 and yi = −ζi for u ∈ H3
− ∪ dS−3 . In this way ζi

flips sign between the ± regions, but yi does not. In terms of these variables a cut operator

acting on a function g(ζi, 0) yields

Cutxi g(ζi, 0) = −π
∫ ∞

0
dxi δ(u

2−2xi ζi+x
2
i ) =

{
−π

2 (1± 1) (y2
i −1)−1/2 in H3

±

−π
2 (y2

i +1)−1/2 in dS±3 ,
(5.7)

while the principal-value part, due to Cutxj g(ζi, 0) with i 6= j, evaluates to

PV

∫ ∞
0

dxi
−(u2 − 2xi ζi + x2

i ) + iη
=

{
± arcosh(yi) (y2

i − 1)−1/2 in H3
±

∓ arsinh(yi) (y2
i + 1)−1/2 in dS±3 .

(5.8)

The right-hand side of eq. (5.7) shows that the cut vanishes for u in the region H3
−. This

is a consequence of the delta function having no support inside the domain of integration

[0,∞). In the regions dS±3 and H3
+ there are respectively one and two solutions to the delta-

function constraint, as can also be understood by inspection of figure 15. Focusing on the

contributions to the imaginary part from dS+
3 and dS−3 , we see that both the single and

the triple cuts acting on the product g(ζi, 0) g(ζj , 0) g(ζk, 0) in F3g yield the same results in

both regions. But apart from this product of g’s, the sum in eq. (5.5) also contains ζi ζk
∂
∂ζi

,

which differs by a sign between the two regions. As a result, the imaginary part arising

from the regions dS+
3 and dS−3 cancel each other. The upshot is thus that the imaginary

part of F3g arises solely from the region H3
+.

The final step in the computation of ImF3g is now to perform the integration over u,

the direction of the three-gluon vertex. We do not have analytic results for the integrals in-

volved, but a numerical evaluation is sufficient to show agreement with the analytic formula

in eq. (5.2). Let us give a few details regarding the setup of the numerical integration.

The three-gluon vertex direction u may be parametrized explicitly in terms of Min-

kowski angles ψ, ϑ and φ. As discussed above, the imaginary part arises solely from the

– 33 –



J
H
E
P
0
7
(
2
0
1
5
)
0
8
3

Figure 15. Spacetime pictures of a Wilson line along the positive x0-axis (with normalized velocity

v1) and a three-gluon vertex u, located in the region (a) H3
−, (b) dS−

3 or (c) H3
+. The region dS+

3 is

very similar to dS−
3 and is omitted. Each figure shows two lightlike gluons emanating from u: one

along the future light cone and the other along the past light cone. Of these two on-shell gluons

respectively zero, one or two gluons are able to connect to the Wilson line. In other words, in

case (a), (b) and (c) there are respectively zero, one and two solutions to the delta functions coming

from the cut operators. This means that in the region H3
− the operator Cutx1 vanishes, thereby

producing no imaginary part. Furthermore, as discussed in the main text, the imaginary parts from

the space-like regions dS+
3 and dS−

3 cancel each other. The only contribution to the imaginary part

of the diagram thus arises from the region H3
+.

region H3
+, which may be parametrized as

H3
+ :


u0 = coshψ

u1 = sinhψ sinϑ cosφ

u2 = sinhψ sinϑ sinφ

u3 = sinhψ cosϑ ,

0 ≤ ψ < ∞
0 ≤ ϑ ≤ π

0 ≤ φ ≤ 2π .

(5.9)

To facilitate the numerical integration over ψ ∈ [0,∞) we perform a further change of

variables z = tanhψ, which has the effect of producing a finite integration domain z ∈ [0, 1].

Explicit expressions for ζi = yi = u · vi in terms of z, the angles ϑ, φ and the cusp angles

γij are obtained by choosing a convenient Lorentz frame. For example,

vµ1 = (1, 0, 0, 0) ,

vµ2 = (cosh γ12, 0, 0, sinh γ12) ,

vµ3 = (cosh γ13, 0, sin θ3 sinh γ13, cos θ3 sinh γ13) .

(5.10)

These velocities manifestly satisfy v2
i = 1 and v1 · vk = cosh γ1j for j = 2, 3. The remaining

identity, v2 · v3 = cosh γ23, fixes θ3 in terms of the cusp angles,

cos θ3 =
cosh γ12 cosh γ13 − cosh γ23

sinh γ12 sinh γ13
. (5.11)

The explicit parametrization of the Wilson-line velocities in eq. (5.10) breaks the antisym-

metry of F3g under interchange of any pair of cusp angles at the integrand level. However,
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Figure 16. (Color online.) A comparison between the numerical and analytical results for the

imaginary part of the three-gluon vertex diagram. The left pane shows ImF3g as a function of

two cusp angles from numerical integration (in blue) and from the analytical result (in light gray)

superimposed. The numerical result fits the analytic function rather well, with an overall scale

factor deviating from one by about 2 · 10−5. In the right pane we observe that ∆, the absolute

difference between the numerical and the analytical values, (in red) is below the numerical errors

(in translucent green) for nearly all points (γ12, γ23) and is on average about three times smaller.

The relative difference with respect to the analytic formula, ∆/| ImF3g|, is on average of the order

of 2 percent, leading to the conclusion that there is excellent agreement between the numerical and

analytical results. In both plots γ13 = 0.5, while γ12 and γ23 vary between 0.0 and 1.2.

the antisymmetry must be recovered after integration (cf. eq. (5.1)). At the level of nu-

merical integration this indeed happens for small cusp angles, while for large cusp angles

numerical instabilities arise from the integration near z ≈ 1, i.e. very large ψ. Averaging

over the cusp angles γij remedies those instabilities.

Having constructed expressions for ζi in terms of z, the angles ϑ, φ and the cusp angles

γij , the imaginary part of the three-gluon vertex diagram is explicitly given by

ImF3g =

∫ 1

0

dz z2

(1−z2)2

∫ π

0
dϑ sinϑ

∫ 2π

0
dφ

3∑
i,j,k=1

εijk vi · vj ζi ζk
(
∂

∂ζi
G
(
{ζi}

))
, (5.12)

where the cut operators are absorbed into the function G
(
{ζi}

)
, given by

G
(
{ζi}

)
≡ (Cutxi + Cutxj + Cutxk −Cutxi,xj ,xk) g(ζi, 0) g(ζj , 0) g(ζk, 0)

= −π arcosh ζj arcosh ζk + π arcosh ζi arcosh ζk + π arcosh ζi arcosh ζj − π3

(ζ2
i − 1)1/2 (ζ2

j − 1)1/2 (ζ2
k − 1)1/2

.

(5.13)

For the numerical integration of eq. (5.12) we have used GSL [81]. A comparison between

the numerical and analytical results for ImF3g is shown in figure 16. We find that the

relative difference between the numerical and analytical results are at the percent level,

with absolute differences smaller than numerical errors. We conclude that our formula for

the imaginary part in eq. (5.12) is in excellent agreement with the analytic expression in

eq. (5.2). This suggests the applicability of the formalism introduced in ref. [1] to obtain

the imaginary part of any eikonal diagram with internal vertices.
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6 Conclusions

In this paper we have provided algorithms for the compution of the position-space cuts of

eikonal diagrams introduced in ref. [1] and discussed the interplay of the cutting prescrip-

tion with non-Abelian exponentiation. The cutting prescription is applied directly to the

position-space representation of an eikonal diagram and computes its imaginary part to

the leading order in the dimensional regulator ε. The prescription is stated in eqs. (3.10)–

(3.12). The relation of the imaginary part to the branch cut discontinuity is given in

eq. (3.14).

Momentum-space cuts of eikonal diagrams, analogous to the Cutkosky rules for stan-

dard Feynman diagrams, were introduced in ref. [21] where they were used to show that

the exchanges of Glauber-region gluons (i.e., maximally transverse gluons) produce imag-

inary parts of the Wilson-line correlator. Any given momentum-space cut separates the

eikonal diagram into two disjoint subdiagrams, putting the eikonal and, depending on the

cut, possibly also a number of standard Feynman propagators on shell (see figure 5 for an

illustration). As a result, momentum-space cuts have the conceptual advantage of factoring

eikonal diagrams into on-shell lower-loop and tree diagrams which can be computed as inde-

pendent objects. In practice, however, the resulting cut diagrams involve integrations over

two-, three-, four-, . . . particle phase space. The evaluation of these phase-space integrals

poses a substantial computational challenge, limiting the applicability of momentum-space

cuts for computing imaginary parts.

In contrast, position-space cuts do not factor the eikonal diagram into disjoint subdi-

agrams, but rather constrain the gauge bosons exchanged between the energetic partons

to be lightlike. For space-like external kinematics such exchanges are causally impossible,

and the imaginary part vanishes. For time-like kinematics such exchanges are allowed and

generate a nontrivial evolution of the phases of the parton states, leading in turn to a close

relation of the imaginary part of the cusp anomalous dimension to the static interquark

potential. Position space thus offers a causality viewpoint on the origin of the imaginary

part of the eikonal diagram. This is complementary to the unitarity viewpoint provided

by momentum space — i.e., that the imaginary part arises from the hard partons going

on shell and exchanging Glauber-region gluons. At the computational level, the number of

position-space cut diagrams contributing to the imaginary part of a given eikonal diagram

is in practice smaller than the number of momentum-space cut contributions, and several

of the position-space cut diagrams can be seen to be equal a priori.

We have applied our formalism to several two- and three-loop eikonal diagrams, find-

ing agreement with results previously obtained in the literature [21, 28, 35, 38, 39]. These

computations also serve to demonstrate that the position-space cut diagrams contributing

to the imaginary part of a given eikonal diagram can be evaluated in practice in nontrivial

cases. In particular, for eikonal diagrams without internal vertices — i.e., QED-like dia-

grams — the contributing cut diagrams can be evaluated systematically by means of our

algorithm for computing the principal-value integrals involved (supplemented with a slight

generalization of the algorithm of that in ref. [76] for expressing multiple polylogarithms

in terms of ones with constant indices).
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The formalism developed in this paper allows us to compute the imaginary part of

eikonal diagrams only to the leading order in ε. This appears to limit the applicability of

the approach, but in practice Wilson line correlators can often be expressed in terms of

diagrams with simple poles in ε (once the diagrams are expressed in terms of the renormal-

ized coupling). This owes to the non-Abelian exponentiation theorem [4, 5, 8–14] which

states that the correlator can be expressed as the exponential of specific linear combina-

tions of diagrams mutually related by permutations of the soft-gluon attachment points.

These linear combinations, called webs, have the property that the leading divergence of

the constituent diagrams cancels, leaving in many cases webs with simple poles in ε. The

organization of the exponent of the Wilson line correlator in terms of webs is particularly

beneficial for the applicability of the present cutting prescription: the cuts must be applied

to an entire web rather than its constituent diagrams separately, as the separate imaginary

parts, computed to leading order in ε, will cancel. In this sense the cutting prescription

has a nontrivial interplay with non-Abelian exponentiation.

It would be intriguing to investigate whether the position-space cuts studied in this

paper can be utilized, or serve as inspiration, for developing (generalized) unitarity meth-

ods [48–52, 54–57] for correlators of Wilson lines. Another interesting direction for future

research is the extension of the present formalism to computations of imaginary parts of

Wilson line correlators to subleading orders in ε.
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A Real and imaginary parts of multiple polylogarithms

The position-space cut prescription in eq. (3.12) produces principal-value integrals when

applied to eikonal diagrams beyond one loop. In practice, we compute such integrals as

the corresponding full integral (which evaluates into multiple polylogarithms) minus its

imaginary part, cf. eq. (2.10). In this appendix we describe how to construct the required

real and imaginary part of multiple polylogarithms to arbitrary weight in a systematic way.
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Explicit formulas for imaginary parts are given up to weight four, while the real parts are

obtained by subtracting the imaginary part from the original function.

Let us first introduce some notation. Multiple polylogarithms are defined recursively by

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t) for (a1, . . . , an) 6= ~0n , (A.1)

starting from the special cases

G(; 0) ≡ 0 , G(;x) ≡ 1 , G(~0n;x) ≡ 1

n!
logn x , (A.2)

where ~an = (a, . . . , a) denotes a vector with n equal indices. Multiple polylogarithms

satisfy a variety of properties. They form a shuffle algebra,

G(a1, . . . , an1 ;x)G(an1+1, . . . , an1+n2 ;x) =
∑

σ∈Σ(n1,n2)

G(aσ(1), . . . , aσ(n1+n2);x) . (A.3)

They are invariant under a common rescaling of all arguments: setting ~a = (a1, . . . , an)

we have

G(k~a; k x) = G(~a;x) for ai 6= 0 and k ∈ C∗. (A.4)

They reduce to classical polylogarithms in certain cases,

G(~0n;x) =
1

n!
logn x , G(~an;x) =

1

n!
logn

(
1− x

a

)
,

G(~0n−1, a;x) = −Lin

(
x

a

)
, G(~0n,~ap;x) = (−1)p Sn,p

(
x

a

)
, (A.5)

or to harmonic polylogarithms, introduced in ref. [82],

G(~a;x) = (−1)kH~a(x) if ∀ai ∈ ~a : ai ∈ {±1, 0} , (A.6)

where k denotes the number of +1’s in ~a. We refer to ref. [74] for more details.

Having set the notation, we turn to the problem of constructing the real and imaginary

parts of multiple polylogarithms. As it turns out, it is most convenient to obtain the real

part as the difference of the full function and its imaginary part,

ReG(~a;x) = G(~a;x)− i ImG(~a;x) . (A.7)

Thus, it suffices to determine the imaginary part. In the remainder of this section we

accordingly focus on the construction of imaginary parts.

The imaginary part of a multiple polylogarithm arises when one or more of its indices

ai are located along the path of integration of the corresponding iterated integral, that

is ai ∈ [0, x]. By giving either the argument or the indices an infinitesimal imaginary

part, the imaginary part of any multiple polylogarithm is fixed recursively in terms of the

imaginary part of the classical logarithm. This is most easily seen in the special case of a

polylogarithm with all indices equal to zero by using its definition in eq. (A.2) in terms of

logarithms,

ImG(~0n;x± iη) =
1

n!
Im logn(x± iη) =

1

n!
Im
[(

log |x| ± iπθ(−x)
)n]

. (A.8)
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The imaginary part on the right-hand side may be obtained by simply expanding the prod-

uct and collecting the terms proportional to i. The other two special cases in eq. (A.2) are

real constants and thus have a vanishing imaginary part. This concludes the computation

of the imaginary part of all the special cases listed in eq. (A.2).

We thus turn to determining the imaginary part of a multiple polylogarithm in the

general case G(~a;x) with at least one non-zero index, cf. eq. (A.1). Since an imaginary

part arises when some of the indices ai are located along the path of integration, it will

be necessary to know the relative locations of the ai’s in the complex plane. To this end,

we will make a few assumptions on the indices and arguments of G(~a;x). First, let us

observe that all polylogarithms encountered in this paper will have real indices ai (up to

an infinitesimal imaginary part whose sign is fixed by the Feynman rules). In addition,

we will assume, without loss of generality, that the last index is non-zero, and that the

endpoint of integration x is real and positive.

The fact that the latter two assumptions may be imposed without loss of generality

follows from the properties of multiple polylogarithms. Indeed, multiple polylogarithms

with any number of trailing zeros may be expressed, with the help of the shuffle algebra

in eq. (A.3), in terms of multiple polylogarithms with a non-zero last index, multiplied by

pure logarithms. For example,

G(a, 0;x) = G(a;x)G(0;x)−G(0, a;x) ,

G(a, 0, 0;x) = G(a;x)G(0, 0;x)−G(0, a, 0;x)−G(0, 0, a;x)

= G(a;x)G(0, 0;x)−G(0, a;x)G(0;x) +G(0, 0, a;x) . (A.9)

Their imaginary part is thus given in terms of the (real and) imaginary parts of multiple

polylogarithms with a non-zero last index and pure logarithms. The latter are known

from eq. (A.8). Thus, it suffices to determine the imaginary part of polylogarithms with a

non-zero last index.

Now, taking the last index to be non-zero, we may apply the rescaling relation eq. (A.4)

with k = −1,

G(~a;x) = G(−~a;−x) for an 6= 0 , (A.10)

to map any negative argument x to a positive argument [83]. Likewise, a complex argument

can be mapped to a real number after rescaling by k = 1/x, yielding G(~a/x; 1).

Our task is thus to determine the imaginary part of a multiple polylogarithm in the

general case G(~a;x) with a non-zero last index, and with the endpoint of integration x

being real and positive. Starting at weight one, we let a, x ∈ R, a 6= 0 and x > 0. Explicit

computation of the imaginary part — using the fact that the imaginary part of an integral

equals the integral over the imaginary part — yields

ImG(a± iη;x) = Im

∫ x

0

dt

t− (a± iη)
= ±π

∫ x

0
dt δ(t− a) = ±π θ(a)θ(x− a) . (A.11)

This is the explicit formula for the imaginary part at lowest weight.
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Moving on to higher-weight polylogarithms, let us consider a weight n multiple poly-

logarithm. The integrand takes the form

I =
1

t1 − (a1 ± iη)

1

t2 − (a2 ± iη)
· · · 1

tn − (an ± iη)
. (A.12)

The imaginary part of I may be broken into real and imaginary parts of each of the

above fractions. The imaginary part of a single fraction is simple, because it localizes the

corresponding integration variable to a point. In contrast, the real parts do not simplify,

so it is convenient to have as few real-part evaluations as possible. To this end, we split

the imaginary part of the integrand (A.12) into products of imaginary parts and real parts

of products by recursively applying

Im(PQ) = ImP ReQ+ ReP ImQ ,

ReP ReQ = Re(PQ) + ImP ImQ , (A.13)

where P and Q represent either a single fraction or products of fractions. For example,

Im(ab) = Im aRe b+ Im bRe a ,

Im(abc) = Im aRe(bc) + Im bRe(ac) + Im cRe(ab) + 2 Im a Im b Im c ,

Im(abcd) = Im aRe(bcd)+Im bRe(acd)+Im cRe(abd)+Im dRe(abc)+2 Im a Im b Im cRe d

+2 Im a Im b Im dRe c+2 Im a Im c Im dRe b+2 Im b Im c Im dRe a , (A.14)

where a, b, c and d represent individual fractions in the integrand I of a multiple polylog-

arithm. Notice that each term on the right-hand side of eq. (A.14) contains only one real

part (of a product) and a product of imaginary parts (of single factors).

The imaginary part of higher-weight multiple polylogarithms are then computed by

applying eq. (A.14) to the integrand and integrating out the delta functions arising from

eq. (2.10). For example, the imaginary part of a weight-two multiple polylogarithm for

a, b, x ∈ R, b 6= 0 and x > 0 is computed as follows,

ImG(a± iη, b± iη;x)

=

∫ x

0
dt

∫ t

0
du Im

(
1

t− (a± iη)

1

u− (b± iη)

)
=

∫ x

0
dt

∫ t

0
du

[
Im

(
1

t−(a±iη)

)
Re

(
1

u−(b±iη)

)
+Re

(
1

t−(a±iη)

)
Im

(
1

u−(b±iη)

)]
= ±π

∫ x

0
dt δ(t− a)

∫ t

0
duRe

(
1

u−(b±iη)

)
± π

∫ x

0
dtRe

(
1

t−(a±iη)

)∫ t

0
du δ(u− b)

= ±π θ(a)θ(x− a) Re

∫ a

0

du

u− (b± iη)
± πRe

∫ x

0

dt

t− (a± iη)
θ(b)θ(t− b)

= ±π θ(a)θ(x− a) ReG(b± iη; a)± π θ(b)θ(x− b) Re
(
G(a± iη;x)−G(a± iη; b)

)
.

(A.15)

The real parts of lower-weight functions on the right-hand side are known inductively from

expressions for lower-weight imaginary parts, together with eq. (A.7) for the real part. We
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remark that when a = 0, the first term in eq. (A.15) vanishes because G(b ± iη; 0) = 0.

The imaginary part of weight-three and -four multiple polylogarithms have been computed

along the same lines. Before quoting the results, it is advantageous to introduce some

notation, in terms of which the formulas assume a nice form.

The imaginary parts are conveniently expressed in terms of two new functions: a

slightly different notation for multiple polylogarithms, together with generalized step func-

tions. Let us first introduce the former, which is an iterated integral where the base point

of integration may be freely chosen,

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t−an
I(a0; a1, . . . , an−1; t) with I(a0; ;x) ≡ 1 . (A.16)

Setting the base point to zero we obviously recover the multiple polylogarithms defined

in eq. (A.1), up to a conventional reversal of the indices. Although eq. (A.16) appears to

define a larger class of integrals, it actually does not. Any I can be written as a linear

combination of (products of) G’s. This is achieved by splitting the range of integration

into a difference of paths with basepoint zero, cf. ref. [75]. For example,

I(a0; a1; a2) = I(0; a1; a2)− I(0; a1; a0) = G(a1; a2)−G(a1; a0) . (A.17)

At higher weight one splits the innermost integrals first. At weight two,

I(a0; a1, a2; a3) =

∫ a3

a0

dt

t− a2

(
G(a1; t)−G(a1; a0)

)
= G(a2, a1; a3)−G(a2, a1; a0)−G(a1; a0)

(
G(a2; a3)−G(a2; a0)

)
. (A.18)

In this way any I can be written in terms of G’s.

We also introduce generalized step functions θ(a1, . . . , an), which may be thought of

as enforcing a1 ≤ · · · ≤ an. In terms of ordinary single-variable step functions,

θ(a1, . . . , an) ≡
n−1∏
i=1

θ(ai+1 − ai) for n > 1 and ∀ i : ai 6= ai+1 and ai ∈ R . (A.19)

Equal adjacent arguments are dealt with using the following definition

θ(. . . , a, b, . . . , b︸ ︷︷ ︸
n times

, c, . . . ) =
1

n!
θ(. . . , a, b, c, . . . ) for real indices a 6= b 6= c . (A.20)

Infinitesimal imaginary parts produce an overall sign,

θ(. . . , a± iη, . . . ) = ±θ(. . . , a, . . . ) for a ∈ R . (A.21)
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In this notation, the imaginary part of multiple polylogarithms up to weight four are

ImG(a;x) = π θ(0, a, x) , (A.22)

ImG(a, b;x) = π θ(0, a, x) ReG(b; a) + π θ(0, b, x) Re I(b; a;x) , (A.23)

ImG(a, b, c;x) = π θ(0, a, x) ReG(b, c; a) + π θ(0, b, x) Re
[
I(b; a;x)G(c; b)

]
+ π θ(0, c, x) Re I(c; b, a;x) + 2π3θ(0, c, b, a, x) , (A.24)

ImG(a, b, c, d;x) = π θ(0, a, x) ReG(b, c, d; a)

+ π θ(0, b, x) Re
[
I(b; a;x)G(c, d; b)

]
+ π θ(0, c, x) Re

[
I(c; b, a;x)G(d; c)

]
+ π θ(0, d, x) Re I(d; c, b, a;x)

+ 2π3θ(0, c, b, a, x) ReG(d; c)

+ 2π3θ(0, d, b, a, x) Re I(d; c; b)

+ 2π3θ(0, d, c, a, x) Re I(c; b; a)

+ 2π3θ(0, d, c, b, x) Re I(b; a;x) , (A.25)

where a, b, c, d, x ∈ R, x is positive, and in each case the last index is non-zero. The

suppressed Feynman iη’s may be reinstated by replacing the indices according to a→ a±iη.

We conclude this section by providing proofs of eqs. (A.23) and (A.24).

Proof of eq. (A.23). We proceed by direct computation, using eq. (A.14) and the identity

Im 1
ξ±i0 = ∓πδ(ξ),

ImG(a, b;x) = Im

(∫ x

0

dt

t−a−i0

∫ t

0

du

u−b−i0

)
=

∫ x

0
dt

∫ t

0
du Im

(
1

t−a−i0
1

u−b−i0

)
=

∫ x

0
dt

∫ t

0
du

[
Im

(
1

t−a−i0

)
Re

(
1

u−b−i0

)
+Re

(
1

t−a−i0

)
Im

(
1

u−b−i0

)]
=

∫ x

0
dt

∫ t

0
du

[
πδ(t− a) Re

(
1

u−b−i0

)
+Re

(
1

t−a−i0

)
πδ(u− b)

]
= π

∫ x

0
dt δ(t− a)

∫ t

0
duRe

(
1

u−b−i0

)
+π

∫ x

0
dtRe

(
1

t−a−i0

)∫ t

0
du δ(u− b)

= πθ(0, a, x)

∫ a

0
duRe

(
1

u−b−i0

)
+π

∫ x

0
dtRe

(
1

t−a−i0

)
θ(0, b, t)

= πθ(0, a, x) Re

(∫ a

0

du

u−b−i0

)
+πθ(0, b, x) Re

(∫ x

b

dt

t−a−i0

)
= πθ(0, a, x) ReG(b; a) + πθ(0, b, x) Re I(b; a;x) . (A.26)

This completes the proof of eq. (A.23).
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Proof of eq. (A.24). We proceed by direct computation, using eq. (A.14) and the identity

Im 1
ξ±i0 = ∓πδ(ξ),

ImG(a, b, c;x)

= Im

(∫ x

0

dt

t−a−i0

∫ t

0

du

u−b−i0

∫ u

0

dv

v−c−i0

)
=

∫ x

0
dt

∫ t

0
du

∫ u

0
dv Im

(
1

t−a−i0
1

u−b−i0
1

v−c−i0

)
=

∫ x

0
dt

∫ t

0
du

∫ u

0
dv

[
Im

(
1

t−a−i0

)
Re

(
1

u−b−i0
1

v−c−i0

)
+Im

(
1

u−b−i0

)
Re

(
1

t−a−i0
1

v−c−i0

)
+Im

(
1

v−c−i0

)
Re

(
1

t−a−i0
1

u−b−i0

)
+2 Im

(
1

t−a−i0

)
Im

(
1

u−b−i0

)
Im

(
1

v−c−i0

)]
=

∫ x

0
dt

∫ t

0
du

∫ u

0
dv

[
πδ(t−a) Re

(
1

u−b−i0
1

v−c−i0

)
+πδ(u−b) Re

(
1

t−a−i0
1

v−c−i0

)
+πδ(v−c) Re

(
1

t−a−i0
1

u−b−i0

)
+2π3δ(t−a)δ(u−b)δ(v−c)

]
≡ I(3,1) + I(3,2) + I(3,3) + I(3,4) . (A.27)

We continue by evaluating each term in the last line of eq. (A.27) separately. The first

term evaluates to,

I(3,1) = π

∫ x

0
dt δ(t− a)

∫ t

0
du

∫ u

0
dvRe

(
1

u− b− i0
1

v − c− i0

)
= πθ(0, a, x)

∫ a

0
du

∫ u

0
dvRe

(
1

u− b− i0
1

v − c− i0

)
= πθ(0, a, x) Re

(∫ a

0
du

∫ u

0
dv

1

u− b− i0
1

v − c− i0

)
= πθ(0, a, x) ReG(b, c; a) . (A.28)

The second term in eq. (A.27) evaluates to,

I(3,2) = π

∫ x

0
dt

∫ t

0
du δ(u− b)

∫ u

0
dvRe

(
1

t− a− i0
1

v − c− i0

)
= π

∫ x

0
dt θ(0, b, t)

∫ b

0
dvRe

(
1

t− a− i0
1

v − c− i0

)
= πθ(0, b, x)

∫ x

b
dt

∫ b

0
dvRe

(
1

t− a− i0
1

v − c− i0

)
= πθ(0, b, x) Re

(∫ x

b
dt

1

t− a− i0

∫ b

0
dv

1

v − c− i0

)
= πθ(0, b, x) Re

(
I(b; a;x)G(c; b)

)
. (A.29)
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The third term in eq. (A.27) evaluates to,

I(3,3) = π

∫ x

0
dt

∫ t

0
du

∫ u

0
dv δ(v − c) Re

(
1

t− a− i0
1

u− b− i0

)
= π

∫ x

0
dt

∫ t

0
du θ(0, c, u) Re

(
1

t− a− i0
1

u− b− i0

)
= π

∫ x

0
dt θ(0, c, t)

∫ t

c
duRe

(
1

t− a− i0
1

u− b− i0

)
= πθ(0, c, x)

∫ x

c
dt

∫ t

c
duRe

(
1

t− a− i0
1

u− b− i0

)
= πθ(0, c, x) Re

(∫ x

c
dt

∫ t

c
du

1

t− a− i0
1

u− b− i0

)
= πθ(0, c, x) Re I(c; b, a;x) . (A.30)

The fourth term in eq. (A.27) evaluates to,

I(3,4) = 2π3

∫ x

0
dt

∫ t

0
du

∫ u

0
dv δ(t− a)δ(u− b)δ(v − c)

= 2π3

∫ x

0
dt δ(t− a)

∫ t

0
du δ(u− b)

∫ u

0
dv δ(v − c)

= 2π3

∫ x

0
dt δ(t− a)

∫ t

0
du δ(u− b)θ(0, c, u)

= 2π3

∫ x

0
dt δ(t− a)θ(0, c, b, t)

= 2π3θ(0, c, b, a, x) . (A.31)

Adding up the four contributions in eqs. (A.28)–(A.31) according to eq. (A.27) we obtain

the result given in eq. (A.24). This completes the proof.

The identity (A.25) may be shown by completely analogous steps, and we therefore

omit its proof here.

B Algorithm for achieving canonical-form polylogarithms

In their position-space representation, eikonal diagrams without internal vertices, and the

corresponding cut diagrams, take the form of iterated integrals. A first step in the evalua-

tion of these diagrams therefore amounts to recognizing the definition of multiple polylog-

arithms in terms of iterated integrals, cf. eq. (A.1). The resulting multiple polylogarithms

depend in general on the kinematical variables of the problem through both their indices

and their argument. They may be rewritten in terms of polylogarithms with constant

indices, in so-called canonical form, by exploiting the Hopf algebra structure of multi-

ple polylogarithms, which encodes the plethora of functional relations within this class of

functions. In this appendix we describe the algorithm to cast multiple polylogarithms in

canonical form, which is extensively used in the computations in section 4.
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The algorithm to cast multiple polylogarithms in canonical form relies on the Hopf

algebra structure of multiple polylogarithms. In particular, we make use of the notions

of the symbol and coproduct of multiple polylogarithms, see refs. [74, 75] and references

therein, as well as a procedure from ref. [76] to map symbols to polylogarithms. In order

to describe the algorithm, we start by setting up notation. Let us denote an eikonal

diagram, or a cut eikonal diagram (or a partially integrated result thereof), by the function

g(~x), depending on n variables, ~x = {x1, . . . , xn}. (This set of variables typically contains

the cusp angles and possibly some remaining integration variables.) After recognizing

the definition of multiple polylogarithms, the function g(~x) is given in terms of functions

G
(
~a(~x); z(~x)

)
depending on ~x through both their indices ~a(~x) and their argument z(~x). To

simplify the following presentation, we will assume12 that g(~x) has uniform transcendental

weight w.

The algorithm follows three steps. Let us first state the algorithm and subsequently

elaborate on each of the steps separately.

Algorithm (Multiple polylogarithms in canonical form)

1. Compute the symbol S[g(~x)] of the function g(~x).

2. Apply a map M~x to the symbol S[g(~x)], whose purpose is to construct a polyloga-

rithm in canonical form with the same symbol as the original function. The resulting

expression differs only from the original function by terms proportional to transcen-

dental constants (which are in the kernel of the symbol map).

3. Compute subsequently the coproducts ∆2,1,...,1, ∆3,1,...,1, . . . , ∆w−1,1 to reconstruct

any missing terms proportional to constants with transcendental weight 2, 3, . . . , w−1

respectively.

The output of this algorithm is a new function h(~x) in canonical form, which is numerically

equal to the original function g(~x). In the remainder of this appendix we shall give the

definitions of the symbol S, the map M~x and the coproduct ∆. We conclude by illustrating

the application of this algorithm to the non-planar two-loop ladder diagram considered in

section 4.1.

The first step of the algorithm involves computing the symbol of multiple polyloga-

rithms, first introduced in ref. [84]. The idea of the symbol map is to encode the functional

relations among multiple polylogarithms as simple algebraic identities in the corresponding

tensor algebra.

One way to define the symbol is by considering the total differential,

dG(an−1, . . . , a1; an) =
n−1∑
i=1

G(an−1, . . . , ai+1, ai−1, . . . , a1; an) d log

(
ai − ai+1

ai − ai−1

)
, (B.1)

12If this assumption fails, the algorithm may be applied to each subexpressions of uniform weight.
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and to define the symbol of a multiple polylogarithm analogously, cf. ref. [72],

S
[
G(an−1, . . . , a1; an)

]
=

n−1∑
i=1

S
[
G(an−1, . . . , ai+1, ai−1, . . . , a1; an)

]
⊗
(
ai − ai+1

ai − ai−1

)
,

(B.2)

in the case of generic indices ai; i.e., non-zero and mutually different. The formula for the

symbol in eq. (B.2), augmented with formulas for special cases and the rules of symbol

calculus (for which we refer the reader to refs. [74, 75]), allows the symbol S[g(~x)] to be

computed. This completes the first step of the algorithm.

The second step of the algorithm takes the resulting symbol as input and maps it

to an expression of multiple polylogarithms in canonical form, whose symbol is the same

as the symbol of the original function. A procedure that achieves this goal was given

in appendix D of ref. [76]. We cast their procedure in the form of an explicit map and

furthermore make a slight generalization in order to deal with functions of more than two

variables which have a sufficiently factorized form. Let us first define the map and then

point out wherein the slight generalization resides.

The map M~x is defined recursively in the number of variables. Starting with the case

of a single variable, we define the map Mx which takes tensors to functions,

Mx(T ) =

G
(
− b1

a1
, . . . ,− bw

aw
; x
)

if T = (awx+ bw)⊗ · · · ⊗ (a1x+ b1) ,

0 otherwise ,
(B.3)

where ai and bi are independent of x. The map Mx is linear in the space of tensors:

given a symbol S =
∑

i ciTi, with rational numbers ci and tensors Ti, one has Mx(S) =∑
i ciMx(Ti). The map Mx(T ) is designed to construct a function in canonical form, such

that its symbol is given by T plus possibly other tensors which have at least one entry

independent of x. The proof of this statement was given in ref. [76].

Generalizing to the multivariate case, we let ~x = {x1, . . . , xn} denote a collection of at

least two variables, and define the multivariate map

M~x(S) =
(
P

(w)
~x,S ◦ P

(w−1)
~x,S ◦ · · · ◦ P (1)

~x,S ◦M
(0)
~x

)
(S)

≡ P (w)
~x,S

(
P

(w−1)
~x,S

(
· · ·P (1)

~x,S

(
M

(0)
~x (S)

)
· · ·
))

, (B.4)

where the projectors P map functions to functions according to

P
(r)
~x,S(h) = h+M

(r)
~x

(
S − S[h]

)
. (B.5)

The maps M
(r)
~x (S) which occur on the right-hand sides of eqs. (B.4)–(B.5) are linear in the

space of tensors (as in the case of a single variable) and are defined to act on elementary

tensors T by recursion in the number of variables,

M
(r)
~x (T ) =


Mx1(T ) for r = 0 ,

Mx2,...,xn(T (1) ⊗ · · · ⊗ T (r))Mx1(T (r+1) ⊗ · · · ⊗ T (w)) for r = 1, 2, . . . , w−1 ,

Mx2,...,xn(T ) for r = w .

(B.6)
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For the map M
(r)
~x (T ) to be non-vanishing, the last w − r indices must depend on x1.

Its output is then given by a canonical function with argument x1 and weight w − r,

multiplied by an x1-independent function of weight r. The projectors P
(r)
~x,S(h) add such

functions to their input, thus gradually constructing a function in canonical form, starting

with functions of x1 with weight w down to weight 1 and repeating the process for the

remaining variables x2, x3, . . . , xn. As a result, the multivariate map M~x(S) generates a

function of the form ∑
(i1,...,in)

ci1,...,inG(~ain ;xn) · · ·G(~ai1 ;x1) , (B.7)

where the ~aik are independent of x1, . . . , xk. This expression is by definition in canonical

form. For a single variable, the indices are in fact constants and as slight abuse of terminol-

ogy this is what we occasionally refer to as canonical form, bearing in mind that eq. (B.7)

is the proper definition of canonical form in the multivariate case.

Having defined the multivariate map, let us point out the difference with respect to the

procedure described in ref. [76]. A slight generalization resides in the definition of M
(r)
~x (T ).

In particular, two of the maps on the right-hand side of eq. (B.6) depend on all remaining

variables x2, . . . , xn, rather than just the next variable x2. This alteration allows us to

reconstruct functions of more than two variables which have a sufficiently factorized form.

A simple example illustrates the point. Consider g(x, y, z) = log x log y log z. This

function is already in canonical form, but the algorithm should nonetheless be able to

reconstruct this function from its symbol. In this case the weight is w = 3, and we set

~x = {x, y, z}. The symbol of g(x, y, z) is given by

S = x⊗ y ⊗ z + x⊗ z ⊗ y + y ⊗ x⊗ z + y ⊗ z ⊗ x+ z ⊗ x⊗ y + z ⊗ y ⊗ x . (B.8)

Let us apply the map to this symbol,

M~x(S) =
(
P

(3)
~x,S ◦ P

(2)
~x,S ◦ P

(1)
~x,S ◦M

(0)
~x

)
(S) . (B.9)

Since S contains no tensors with all three entries depending on x, the first map gives zero,

M
(0)
~x (S) = Mx(S) = 0 . (B.10)

Subsequently, the first projector acts on this result. Inserting its definition from eq. (B.5),

it reduces to applying the map M
(1)
~x (S), which is non-zero only for tensors whose last two

entries depend on x. Since S does not contain such tensors, the result is zero,

P
(1)
~x (0) = M

(1)
~x (S) = 0 . (B.11)

A non-vanishing contribution is found in the next step, coming from the two tensors which

contain x in the last entry.

P
(2)
~x (0) = M

(2)
~x (S) = My,z(y ⊗ z)Mx(x) +My,z(z ⊗ y)Mx(x) . (B.12)

From the definition in eq. (B.3) we have Mx(x) = G(0;x) = log x. The other map My,z is

computed along the very same lines, with the results My,z(y ⊗ z) = 0 and My,z(z ⊗ y) =
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log y log z. By now we have that M~x(S) = P
(3)
~x,S(h), with h = P

(2)
~x (0) = log x log y log z.

Because S = S[h], the last projector P
(3)
~x becomes the identity, resulting in

M~x(S) = log x log y log z = g(x, y, z) , (B.13)

as required, because our algorithm should reconstruct the original function from its symbol.

This example shows that it is crucial to have both variables y and z as parameters in the

maps My,z in eq. (B.12). If one would use a single variable only, then the vanishing maps

My(z⊗y) = My(y⊗z) = 0, as one can easily verify from eq. (B.3), would lead to a vanishing,

and hence incorrect, result. This illustrates the purpose of the slight generalization of

the map.

In conclusion, the second step of the algorithm constructs from the symbol S[g(~x)] an

expression in canonical form, which has the same symbol as g(~x), by applying the map

M~x(S) in eq. (B.4).

The resulting expression differs from the original function g(~x) only by terms propor-

tional to transcendental constants, because such terms are in the kernel of the symbol map.

Finding these missing terms is the task of the next step in the algorithm.

The third step in the algorithm revolves around the coproduct of multiple polyloga-

rithms, which generalizes the concept of the symbol. Before describing how it may be used

to construct missing terms proportional to transcendental constants, let us first define the

required coproducts of the form ∆p,q,...,r. They are derived from the general coproduct

∆, which is defined by its action on iterated integrals with a freely specified base point of

integration, see eq. (A.16), cf. ref. [71]

∆
[
I(a0; a1, . . . , an; an+1)

]
=

n∑
k=0

∑
0=i0<i1<···<ik<ik+1=n+1

I(a0; ai1 , . . . , aik ; an+1)⊗
k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1) .

(B.14)

The right-hand side of eq. (B.14) consists of tensors with two entries, each entry having a

weight between 0 and n, such that the two weights add up to n, the weight of the original

function.13 All possible pairs of weights are thus (0, n), (1, n− 1), . . . , (n, 0). Grouping the

tensors by those pairs of weights decomposes the coproduct into

∆ =
∑
p+q=n

∆p,q . (B.15)

In other words, the action of ∆p,q on I(a0; a1, . . . , an; an+1) yields the subset of terms

in eq. (B.14) of tensors with weight (p, q). Besides the operator ∆p,q, the third step of our

algorithm also uses operators with multiple indices ∆p,q,...,r. Those are defined recursively

in terms of ∆p,q. For example, ∆p,q,r is defined by application of ∆q,r to the second entry

13The weight of I(a0; a1, . . . , an; an+1) is equal to its number of indices, n. Likewise, a pair of weights

(p, q) is attributed to a tensor Tp ⊗ Tq where the weights of Tp and Tq are p and q, respectively.
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of all tensors obtained from ∆p,q+r. These are the definitions of the coproducts which are

needed in the third step of the algorithm. For more details, see ref. [75].

The coproducts thus defined may be employed to construct missing terms proportional

to transcendental constants, starting with the lowest-weight constants, cf. ref. [76]. To be

specific, in the previous step of the algorithm we constructed a function h(~x) such that

S[g(~x) − h(~x)] = 0. This means that the difference g(~x) − h(~x) must be proportional to

transcendental constants. Following the recipe in the third step of the algorithm we act

on this difference with the coproduct ∆2,1,...,1 to first find terms proportional to ζ2. The

coproduct takes the form

∆2,1,...,1

[
g(~x)− h(~x)

]
=

∑
(i3,...,iw)

Li3,...,iw(~x)⊗ logRi3(~x)⊗ · · · ⊗ logRiw(~x) , (B.16)

where Li3,...,iw is a linear combination of weight-two multiple polylogarithms, and the

Ri3 , . . . , Riw are rational functions. Since the weight-two object Li3,...,iw must be pro-

portional to ζ2, we write Li3,...,iw = k ζ2 for some rational number k. This constant of

proportionality can be determined by numerical evaluation at some specific values for ~x

using Ginac [85] and running the PSLQ algorithm [86, 87]. The hereby obtained tran-

scendental constant k ζ2 multiplies a polylogarithmic function, whose symbol is given by

Ri3 ⊗ · · · ⊗ Riw , arising from the tail of the arguments of eq. (B.16). Feeding this symbol

back into the first step of this algorithm and collecting the resulting multiple polyloga-

rithms from the output of step two produces a function h2(~x) in canonical form, which is

to multiply the constant k ζ2. As a consequence we have that

∆2,1,...,1

[
g(~x)− h(~x)− k ζ2 h2(~x)

]
= 0 , (B.17)

and we conclude that the difference g(~x)− h(~x)− k ζ2 h2(~x) is equal to terms proportional

to transcendental constants of weight three and higher, which are in the kernel of ∆2,1,...,1.

Iterating this procedure with the coproducts ∆3,1,...,1, . . . , ∆w−1,1 allows us to moreover

reconstruct the other missing constants with transcendental weight 3, . . . , w − 1, respec-

tively. The final output of the third step in the algorithm is thus a rewritten version of the

original function in canonical form.

Let us conclude this appendix by demonstrating an explicit application of the algo-

rithm, involving in particular the use of the coproduct. To this end, we consider the

expression in the first line of eq. (4.19), F̃ (2) = 2R(χ)2g(χ), where the interesting part is

given by the weight-three function

g(χ) =
1

4

(
G(ρ1, 0, ρ1; 1)−G(ρ1, 0, ρ2; 1)−G(ρ2, 0, ρ1; 1) +G(ρ2, 0, ρ2; 1)

)
. (B.18)

It depends on a single variable χ through its indices, ρ1 = χ
χ−1 and ρ2 = 1

1−χ . We wish

to express this in terms of multiple polylogarithms with constant indices and argument χ.

Following the algorithm, we start by computing the symbol of g(χ),

S
[
g(χ)

]
= χ⊗ (1− χ)⊗ χ− χ⊗ χ⊗ χ+ χ⊗ (1 + χ)⊗ χ . (B.19)
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Application of the map from step two yields a multiple polylogarithm in canonical form

with the same symbol,

h(χ) = Mχ

(
S
[
g(χ)

])
= G(0,−1, 0;χ)−G(0, 0, 0;χ) +G(0, 1, 0;χ) . (B.20)

Indeed, the symbol of the difference vanishes, S
(
g(χ)− h(χ)

)
= 0. Yet the functions g(χ)

and h(χ) are not equal, because they differ by terms proportional to zeta values up to

weight three, in this case ζ2 and ζ3. According to the third step of the algorithm, the

missing terms proportional to ζ2 are obtained first by acting with the coproduct ∆2,1 on

the difference,

∆2,1

[
g(χ)− h(χ)

]
= c2 ⊗G(0;χ) = ∆2,1

[
c2G(0;χ)

]
, (B.21)

where we expect that c2 = k ζ2 for some rational number k. Explicitly, we find

c2 = −1

4
G

(
χ

χ−1
,

1

1−χ
; 1

)
+

1

4
G

(
1

1−χ
,
χ

χ−1
; 1

)
− Li2(χ)− Li2(−χ) +

1

2
Li2

(
χ−1

χ

)
− 1

2
Li2(1−χ)− log(χ) log(1+χ) +

1

2
log2(χ)− log(1−χ) log(χ) . (B.22)

Evaluating this expression at any value of χ with Ginac yields

c2 = −0.822467033424113218 . . . = −1

2
ζ2 . (B.23)

Inserting this result for c2 into eq. (B.21), we conclude that ∆2,1

[
g(χ)−

(
h(χ)− 1

2ζ2G(0;χ)
)]

= 0. To find the last missing contribution proportional to ζ3, it suffices to evaluate the

remaining difference numerically at a single point,

g(χ)−
(
h(χ)− 1

2
ζ2G(0;χ)

)
= −0.601028451579797142 . . . = −1

2
ζ3 . (B.24)

We finally conclude that

g(χ) = h(χ)− 1

2
ζ2G(0;χ)− 1

2
ζ3

= G(0,−1, 0;χ)−G(0, 0, 0;χ) +G(0, 1, 0;χ)− 1

2
ζ2G(0;χ)− 1

2
ζ3 . (B.25)

We have thus succeeded in expressing g(χ) in terms of multiple polylogarithms with con-

stant indices and argument χ. Inserting this result into F̃ (2) = 2R(χ)2g(χ) reproduces

the second line of eq. (4.19). It is now a simple matter of applying eq. (A.5) for multiple

polylogarithms with constant indices, to rewrite g(χ) in terms of classical polylogarithms,

thus reducing the expression to the form given in the last line of eq. (4.19).

This completes the illustration of our algorithm in a practical example and thereby also

completes our description of each of the three steps in the algorithm to rewrite multiple

polylogarithms in canonical form.
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