2,837 research outputs found

    Developmental gene regulatory network architecture across 500 million years of echinoderm evolution

    Get PDF
    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered

    Positional specificity of different transcription factor classes within enhancers

    Get PDF
    Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers. Keywords: transcription factor binding; gene regulation; genomics; chromatin structureNational Human Genome Research Institute (U.S.) (Grant 2U54HG003067-10)National Institute of General Medical Sciences (U.S.) (Grant T32GM007753

    A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    Get PDF
    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm[superscript 2] 2-terminal monolithic perovskite/silicon multijunction solar cell with a V [subscript OC] as high as 1.65 V. We achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.Bay Area Photovoltaic Consortium (Contract DE-EE0004946)United States. Dept. of Energy (Contract DE-EE0006707

    Asynchronous Sampling Rate Conversions in Digital Communications Systems

    Get PDF
    The problem of resampling digital signals at an output sampling rate that is incommensurate with the input sampling rate is the topic of this paper. This problem is often encountered in practice, as for example in the multiplexing of video signals from different sources for the purpose of distribution. There are basically two approaches to resample the signals. Both approaches are thoroughly described and practical circuits for hardware implementation are provided. A comparison of the two circuits presented in the paper shows that one circuit requires a division to compute the new sampling times. This time scaling operation adds complexity to the implementation with no performance advantage over the other circuit, and makes the “division free” circuit the preferred one for resampling

    Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity.

    Get PDF
    Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer

    AXL modulates extracellular matrix protein expression and is essential for invasion and metastasis in endometrial cancer

    Get PDF
    The receptor tyrosine kinase AXL promotes migration, invasion, and metastasis. Here, we evaluated the role of AXL in endometrial cancer. High immunohistochemical expression of AXL was found in 76% (63/83) of advanced-stage, and 77% (82/107) of high-grade specimens and correlated with worse survival in uterine serous cancer patients. In vitro, genetic silencing of AXL inhibited migration and invasion but had no effect on proliferation of ARK1 endometrial cancer cells. AXL-deficient cells showed significantly decreased expression of phospho-AKT as well as uPA, MMP-1, MMP-2, MMP-3, and MMP-9. In a xenograft model of human uterine serous carcinoma with AXL-deficient ARK1 cells, there was significantly less tumor burden than xenografts with control ARK1 cells. Together, these findings underscore the therapeutic potentials of AXL as a candidate target for treatment of metastatic endometrial cancer

    Effect of screening of the Coulomb interaction on the conductivity in the quantum Hall regime

    Full text link
    We study variable range hopping in the quantum Hall effect regime in the presence of a metallic gate parallel to the plane of a two-dimensional electron gas. Screening of the Coulomb interaction by the gate causes the partial ``filling'' of the Coulomb gap in the density of localized states. At low enough temperatures this leads to a substantial enhancement and a new temperature behavior of the hopping conductivity. As a result, the diagonal conductivity peaks become much wider. The power law dependence of the width of the peaks on the temperature changes: the corresponding exponent turns out to be twice as small as that for gateless structures. The width dependences on the current in non-ohmic regime and on the frequency for the absorption of the electromagnetic waves experience a similar modification. The experimental observation of the crossovers predicted may demonstrate the important role of the Coulomb interaction in the integer quantum Hall regime.Comment: 14 pages + 3 figures by request preprint TPI-MINN-93/58-
    corecore