137 research outputs found

    Characterization of a CCD array for Bragg spectroscopy

    Get PDF
    The average pixel distance as well as the relative orientation of an array of 6 CCD detectors have been measured with accuracies of about 0.5 nm and 50 Ό\murad, respectively. Such a precision satisfies the needs of modern crystal spectroscopy experiments in the field of exotic atoms and highly charged ions. Two different measurements have been performed by illuminating masks in front of the detector array by remote sources of radiation. In one case, an aluminum mask was irradiated with X-rays and in a second attempt, a nanometric quartz wafer was illuminated by a light bulb. Both methods gave consistent results with a smaller error for the optical method. In addition, the thermal expansion of the CCD detectors was characterized between -105 C and -40 C.Comment: Submitted to Review of Scientific Instrument

    Shift in the velocity of a front due to a cut-off

    Full text link
    We consider the effect of a small cut-off epsilon on the velocity of a traveling wave in one dimension. Simulations done over more than ten orders of magnitude as well as a simple theoretical argument indicate that the effect of the cut-off epsilon is to select a single velocity which converges when epsilon tends to 0 to the one predicted by the marginal stability argument. For small epsilon, the shift in velocity has the form K(log epsilon)^(-2) and our prediction for the constant K agrees very well with the results of our simulations. A very similar logarithmic shift appears in more complicated situations, in particular in finite size effects of some microscopic stochastic systems. Our theoretical approach can also be extended to give a simple way of deriving the shift in position due to initial conditions in the Fisher-Kolmogorov or similar equations.Comment: 12 pages, 3 figure

    Primordial helium recombination. I. Feedback, line transfer, and continuum opacity

    Get PDF
    Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated

    Radiative falloff in Schwarzschild-de Sitter spacetime

    Get PDF
    We consider the time evolution of a scalar field propagating in Schwarzschild-de Sitter spacetime. At early times, the field behaves as if it were in pure Schwarzschild spacetime; the structure of spacetime far from the black hole has no influence on the evolution. In this early epoch, the field's initial outburst is followed by quasi-normal oscillations, and then by an inverse power-law decay. At intermediate times, the power-law behavior gives way to a faster, exponential decay. At late times, the field behaves as if it were in pure de Sitter spacetime; the structure of spacetime near the black hole no longer influences the evolution in a significant way. In this late epoch, the field's behavior depends on the value of the curvature-coupling constant xi. If xi is less than a critical value 3/16, the field decays exponentially, with a decay constant that increases with increasing xi. If xi > 3/16, the field oscillates with a frequency that increases with increasing xi; the amplitude of the field still decays exponentially, but the decay constant is independent of xi.Comment: 10 pages, ReVTeX, 5 figures, references updated, and new section adde

    Jacobi-like bar mode instability of relativistic rotating bodies

    Full text link
    We perform some numerical study of the secular triaxial instability of rigidly rotating homogeneous fluid bodies in general relativity. In the Newtonian limit, this instability arises at the bifurcation point between the Maclaurin and Jacobi sequences. It can be driven in astrophysical systems by viscous dissipation. We locate the onset of instability along several constant baryon mass sequences of uniformly rotating axisymmetric bodies for compaction parameter M/R=0−0.275M/R = 0-0.275. We find that general relativity weakens the Jacobi like bar mode instability, but the stabilizing effect is not very strong. According to our analysis the critical value of the ratio of the kinetic energy to the absolute value of the gravitational potential energy (T/∣W∣)crit(T/|W|)_{\rm crit} for compaction parameter as high as 0.275 is only 30% higher than the Newtonian value. The critical value of the eccentricity depends very weakly on the degree of relativity and for M/R=0.275M/R=0.275 is only 2% larger than the Newtonian value at the onset for the secular bar mode instability. We compare our numerical results with recent analytical investigations based on the post-Newtonian expansion.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Binary-induced collapse of a compact, collisionless cluster

    Get PDF
    We improve and extend Shapiro's model of a relativistic, compact object which is stable in isolation but is driven dynamically unstable by the tidal field of a binary companion. Our compact object consists of a dense swarm of test particles moving in randomly-oriented, initially circular, relativistic orbits about a nonrotating black hole. The binary companion is a distant, slowly inspiraling point mass. The tidal field of the companion is treated as a small perturbation on the background Schwarzschild geometry near the hole; the resulting metric is determined by solving the perturbation equations of Regge and Wheeler and Zerilli in the quasi-static limit. The perturbed spacetime supports Bekenstein's conjecture that the horizon area of a near-equilibrium black hole is an adiabatic invariant. We follow the evolution of the system and confirm that gravitational collapse can be induced in a compact collisionless cluster by the tidal field of a binary companion.Comment: 9 Latex pages, 14 postscript figure

    Chandra spectroscopy of the hot star beta Crucis and the discovery of a pre-main-sequence companion

    Full text link
    In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74 ks observation of the nearby early B giant, beta Cru (B0.5 III), with the Chandra HETGS. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines are resolved but quite narrow, with half-widths of 150 km/s. The forbidden-to-intercombination line ratios of Ne IX and Mg XI indicate that the hot plasma is distributed in the wind, rather than confined near the photosphere. It is difficult to understand the X-ray data in the context of the standard wind-shock paradigm for OB stars, primarily because of the narrow lines, but also because of the high X-ray production efficiency. A scenario in which the bulk of the outer wind is shock heated is broadly consistent with the data, but not very well motivated theoretically. It is possible that magnetic channeling could explain the X-ray properties, although no field has been detected on beta Cru. We detected periodic variability in the hard (hnu > 1 keV) X-rays, modulated on the known optical period of 4.58 hours, which is the period of the primary beta Cep pulsation mode for this star. We also have detected, for the first time, an apparent companion to beta Cru at a projected separation of 4 arcsec. This companion was likely never seen in optical images because of the presumed very high contrast between it and beta Cru in the optical. However, the brightness contrast in the X-ray is only 3:1, which is consistent with the companion being an X-ray active low-mass pre-main-sequence star. The companion's X-ray spectrum is relatively hard and variable, as would be expected from a post T Tauri star.Comment: Accepted for publication in MNRAS; 19 pages, 15 figures, some in color; version with higher-resolution figures available at http://astro.swarthmore.edu/~cohen/papers/bcru_mnras2008.pd

    IRB perspectives on the return of individual results from genomic research

    Get PDF
    Return of individual research results from genomic studies is a hotly debated ethical issue in genomic research. However, the perspective of key stakeholders—Institutional Review Board (IRB) reviewers—has been missing from this dialogue. This study explores the positions and experiences of IRB members and staff regarding this issue
    • 

    corecore