37 research outputs found

    Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization

    The stigma turbine:A theoretical framework for conceptualizing and contextualizing marketplace stigma

    Get PDF
    Stigmas, or discredited personal attributes, emanate from social perceptions of physical characteristics, aspects of character, and “tribal” associations (e.g., race; Goffman 1963). Extant research emphasizes the perspective of the stigma target, with some scholars exploring how social institutions shape stigma. Yet the ways stakeholders within the socio-commercial sphere create, perpetuate, or resist stigma remain overlooked. We introduce and define marketplace stigma as the labeling, stereotyping, and devaluation by and of commercial stakeholders (consumers, companies and their employees, stockholders, institutions) and their offerings (products, services, experiences). We offer the Stigma Turbine (ST) as a unifying conceptual framework that locates marketplace stigma within the broader sociocultural context, and illuminates its relationship to forces that exacerbate or blunt stigma. In unpacking the ST, we reveal the critical role market stakeholders can play in (de)stigmatization, explore implications for marketing practice and public policy, and offer a research agenda to further our understanding of marketplace stigma and stakeholder welfare

    Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Full text link

    Mind the dbGAP: The Application of Data Mining to Identify Biological Mechanisms

    No full text
    Scientists have discovered basic mechanisms of mammalian development and disease through studying diverse animal models and human Mendelian disorders. The recently constructed database of Genotypes and Phenotypes (dbGAP) has made available to the scientific community extensive human genetic data from large, well-characterized phenotypes. Here we discuss how, in our view, the availability of dbGAP data has changed the traditional scientific approach to the identification of the genetic contributors to human disease and traits. Further, dbGAP has created new opportunities to discover genes important for mammalian development and disease traits through the targeted analysis of coding variants and the application of pathway-based approaches

    Notch pathway activation contributes to inhibition of C2C12 myoblast differentiation by ethanol.

    Get PDF
    The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation

    Ethanol down-regulates MyoD and Myogenin during C2C12 differentiation.

    No full text
    <p>C2C12 cells were induced to differentiate in DM +/−100 mM ethanol for 3 days. (A) MyoD and (B) myogenin mRNA levels were measured by qRT-PCR every 24 hours; transcript levels were quantified using the standard curve method and normalized to B-Actin. Black bars represent control medium treated cultures and grey bars represent cultures treated with medium containing alcohol. Mean ± SEM expression relative to non-alcohol control for each day are shown. *p≤0.05 versus control (n = 9 independent replicates).</p
    corecore