17 research outputs found
The impact of Chinese COVID-19 pandemic on the incidence of peripheral facial nerve paralysis after optimizing policies
ObjectiveTo evaluate the impact of the COVID-19 pandemic on the occurrence of Peripheral Facial Nerve Paralysis (PFNP) in Chinese patients, identify contributing factors, and explore the relationship between COVID-19 and PFNP.MethodsWe conducted a retrospective study covering the years 2020 to 2023, categorizing patients into three groups based on their visit dates: Group 1 (December 8, 2020 to February 28, 2021), Group 2 (December 8, 2021 to February 28, 2022), and Group 3 (December 8, 2022 to February 28, 2023). We collected and compared data on disease onset and patient characteristics among these groups.ResultsIn Group 3, following the widespread COVID-19 outbreak, there was a significant increase of 22.4 and 12.1% in PFNP cases compared to the same periods in the preceding 2 years (p < 0.001). Group 3 patients were more likely to be aged between 30 and 60 years, experience onset within 7 days, present with Hunter syndrome, and have a higher H-B score of VI compared to the previous 2 years (p < 0.017). Logistic regression analysis revealed a strong association between the COVID-19 pandemic and the incidence of Hunter syndrome in PFNP (OR = 3.30, 95% CI 1.81–6.03, p < 0.001).ConclusionThe incidence of PFNP increased in China after the COVID-19 pandemic, particularly in patients with Hunter syndrome, indicating that COVID-19 infection can trigger and worsen PFNP
Effect of temperature and air pressure on the incidence of Bell's palsy in Hangzhou: a distributed lag non-linear analysis
Abstract The etiology of Bell’s palsy (BP) is currently unknown, and the findings from previous studies examining the association between seasonal or meteorological factors and BP have been inconsistent. This research aims to clarify this relationship by analyzing a larger dataset and employing appropriate statistical methods. Data from 5387 patients with BP treated at Zhejiang Provincial Hospital of Traditional Chinese Medicine in Hangzhou, Zhejiang Province, from May 1, 2018, to June 30, 2023, was gathered. We assessed the temporal distribution of meteorological factors and the incidence of BP across seasons and months. A distributed lag non-linear model was used to further investigate the lagged and overall effects of temperature and air pressure on the onset of BP. The temporal distribution of BP incidence revealed the highest average number of cases occurring in December and the lowest in June. A correlation existed between BP episodes and temperature or air pressure. The model revealed a higher relative risk during periods of low temperature and high air pressure, characterized by a time lag effect. This correlation was notably more pronounced in female patients and individuals in the young and middle-aged groups. Our findings suggest that exposure to low temperatures and high air pressure constitute risk factors for BP development
Coupling Study of Deformation Field Evolution and Acoustic Emission Response Characteristics in Rock Failure and Instability Process
During rock failure and instability, cracks usually appear as microcracks in local areas and then expand into significant macroscopic cracks. In this study, the whole process of rock deformation and instability under uniaxial loading is investigated with standard rock specimens, and acoustic emission (AE) and digital image correlation (DIC) technology are introduced to explore the process of rock failure and instability. AE technology is used to identify the location of crack propagation caused by microcracks and large cracks, and DIC is used to measure the crack propagation at different locations. Results show that the evolution of accumulated energy is closely related to the change in stress. When the specimen approaches failure, a “y” shaped localization zone is formed, and the evolution path is consistent with the through-through path of the crack, which better reflects the propagation law of the crack in the rock. The spatial distribution of the AE location event and energy density is consistent with the evolution path of the localization zone. The deformation value of the deformation field is closely related to the initiation and evolution of the deformation localization zone. On the basis of density-based spatial clustering of applications with a noise-clustering algorithm, AE positioning events are further processed and projected into the digital image of the deformation field, and the results of clustering projection are in good agreement with the deformation localization zone. Results show that AE and DIC coupling localization techniques can effectively identify the fracture process zone and fracture mechanism of rock, providing a new technical means for further studying the mechanical properties of rock materials
RMC/ANSYS MULTI-PHYSICS COUPLING SOLUTIONS FOR HEAT PIPE COOLED REACTORS ANALYSES
The heat pipe cooled reactor is a solid-state reactor using heat pipes to passively transfer heat generated from the reactor, which is a potential and near-term space nuclear power system. This paper introduces the coupling scheme between the continuous energy Reactor Monte Carlo (RMC) code and the finite element method commercial software ANSYS. Monte Carlo method has the advantages of flexible geometry modeling and continuous-energy nuclear cross sections. ANSYS Parametric Design Language (APDL) is used to determine the detailed temperature distributions and geometric deformation. The on-the-fly temperature treatment of cross sections was adopted in RMC code to solve the memory problems and to speed up simulations. This paper proposed a geometric updating strategy and reactivity feedback methods for the geometric deformation of the solid-state core. The neutronic and thermal-mechanical coupling platform is developed to analyze and further to optimize the heat pipe cooled reactor design. The present coupling codes analyze a 2D central cross-section model for MEGAPOWER heat pipe cooled reactor. The thermal-mechanical feedback reveals that the solid-state reactor has a negative reactivity feedback (~1.5 pcm/K) while it has a deterioration in heat transfer due to the expansion
RMC/ANSYS MULTI-PHYSICS COUPLING SOLUTIONS FOR HEAT PIPE COOLED REACTORS ANALYSES
The heat pipe cooled reactor is a solid-state reactor using heat pipes to passively transfer heat generated from the reactor, which is a potential and near-term space nuclear power system. This paper introduces the coupling scheme between the continuous energy Reactor Monte Carlo (RMC) code and the finite element method commercial software ANSYS. Monte Carlo method has the advantages of flexible geometry modeling and continuous-energy nuclear cross sections. ANSYS Parametric Design Language (APDL) is used to determine the detailed temperature distributions and geometric deformation. The on-the-fly temperature treatment of cross sections was adopted in RMC code to solve the memory problems and to speed up simulations. This paper proposed a geometric updating strategy and reactivity feedback methods for the geometric deformation of the solid-state core. The neutronic and thermal-mechanical coupling platform is developed to analyze and further to optimize the heat pipe cooled reactor design. The present coupling codes analyze a 2D central cross-section model for MEGAPOWER heat pipe cooled reactor. The thermal-mechanical feedback reveals that the solid-state reactor has a negative reactivity feedback (~1.5 pcm/K) while it has a deterioration in heat transfer due to the expansion
From inflammation to pyroptosis: Understanding the consequences of cadmium exposure in chicken liver cells
Hepatotoxicity is frequently observed following acute cadmium (Cd) exposure in chicken. Oxidative stress and subsequent inflammation are regarded as the main reasons for cadmium-induced liver injury. NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome-induced pyroptosis is involved in various inflammatory diseases, including liver injury. Poultry are more susceptible to harmful effects of heavy metals. However, the mechanism of cadmium-induced liver injury in chicken is still elusive. In this study, the effect of cadmium on chicken liver cells and the underlying mechanisms were investigated. The results showed mitochondria was damaged and excessive reactive oxygen species (ROS) were generated in chicken liver cell line LMH after cadmium exposure. Furthermore, cadmium-induced NLRP3 inflammasome activation and the cell membrane rupture indicated LMH cells pyroptosis. The ROS scavengers, acetylcysteine (NAC) and Mito-TEMPO prevented pyroptosis in LMH cells, suggesting that ROS were responsible for the activation of the NLRP3 inflammasome induced by cadmium. Additionally, anti-oxidative transcription factor Nrf2 was inhibited after cadmium exposure, explaining the excessive ROS generation. In summary, our study showed that cadmium leads to ROS generation by inducing mitochondrial damage and inhibiting Nrf2 activity, which promotes NLRP3 inflammasome activation and eventually induces pyroptosis in LMH cells
Characteristics of the SOL turbulence structure in the first experimental campaign on W7-X with limiter configuration
In the first experimental campaign of Wendelstein 7-X (W7-X), a combined probe head mounted on the multi-purpose manipulator has been used to measure the scrape-off layer (SOL) turbulence characteristics. The preliminary experimental results are summarized to illustrate the SOL turbulence properties in the limiter configuration on W7-X. In a standard limiter configuration, significant electrostatic fluctuations can be found in the near SOL, and the dominant frequency of fluctuation power is below 100 kHz. The auto-correlation spectrum power law decay factor is α ≈ −1 below 40 kHz and α ≈ –2 between 50 and 200 kHz. A broadband spectrum appears between 240 and 380 kHz with a low spectral power density, but a high cross-correlation coefficient. The statistical characteristics of turbulence are calculated by the two-point cross-correlation technique. A clear poloidal dispersion relation is found in the spectrum S(kθ, f), propagating along the ion diamagnetic drift direction with a group velocity (below 100 kHz) about 0.56 km/s in the near SOL in the laboratory frame. The poloidal correlation length is around 5–10 mm in SOL. The turbulence phase velocity is about 0.5–1 km/s when close to the last closed flux surface, which is comparable with the poloidal E × B drift speed
Performance of tungsten plasma facing components in the stellarator experiment W7-X: Recent results from the first OP2 campaign
The transition to reactor-relevant materials for the plasma facing components (PFCs) is an important and necessary step to provide a proof of principle that the stellarator concept can meet the requirements of a future fusion reactor by demonstrating high performance steady-state operation. As a first step to gain experience with tungsten as plasma-facing material in the Wendelstein 7-X (W7-X) stellarator, graphite tiles coated with an approximately 10 µm MedC tungsten layer (NILPRP Bucharest) were installed to complete the ECRH beam dump area in two of the five plasma vessel modules over an area of approximately one square meter each. In addition, tungsten baffle tiles are installed (40 tiles in total) with either bulk tungsten as part of NBI shine-through target or with a tungsten heavy alloy (W95-Ni3.5-Cu1.5) to replace the graphite tiles that were previously thermally overloaded. Based on an advanced diffusive field line tracing method and EMC3-Eirene simulations, the overloaded baffle tiles were redesigned by making the tiles thinner (i.e. moving the plasma-facing surface (PFS) away from the hot plasma region) and by reducing the local angle of incidence through toroidal displacement of the watershed. Significant erosion of the tungsten tiles can only be expected if sputtering by impurity ions such as carbon or oxygen ions contributes. However, the resulting central concentration of tungsten and the corresponding radiation losses are expected to be marginal. The expected deposition of carbon on the tungsten surfaces in the baffle regions mitigates further the possible tungsten enrichment in the core plasma. In OP2.1, no adverse effects of the installed tungsten PFCs on the plasma performance were observed during normal plasma operation. With the design changes made in the baffle area, the predicted heat load reductions could be experimentally confirmed