5,074 research outputs found

    Central Higgs Production at LHC from Single-Pomeron-Exchange

    Full text link
    Contrary to common perceptions about systems produced in Single-Pomeron-Exchange (SPE) pp interactions, the hard diffractive process discovered at the CERN SPS-Collider leads to dominant central production of Higgs bosons at the LHC. The rate for SPE production of Higgs bosons is calculated to be 7-9 % of the total inclusive Higgs rate. In addition, an SPE measurement program of dijet events is outlined for the early days of LHC running which should answer many fundamental questions about the Pomeron structure and its effective flux factor in the proton.Comment: 14 pages, 7 Encapsulated Postscript figures, LaTex, submitted to European Phisical Journal

    Project PROMETHEUS: Design and Construction of a Radio Frequency Quadrupole at TAEK

    Full text link
    The PROMETHEUS Project is ongoing for the design and development of a 4-vane radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy beam transport (LEBT) line and diagnostics section. The main goal of the project is to achieve the acceleration of the low energy ions up to 1.5 MeV by an RFQ (352 MHz) shorter than 2 meter. A plasma ion source is being developed to produce a 20 keV, 1 mA H+ beam. Simulation results for ion source, transmission and beam dynamics are presented together with analytical studies performed with newly developed RFQ design code DEMIRCI. Simulation results shows that a beam transmission 99% could be achieved at 1.7 m downstream reaching an energy of 1.5 MeV. As the first phase an Aluminum RFQ prototype, the so-called cold model, will be built for low power RF characterization. In this contribution the status of the project, design considerations, simulation results, the various diagnostics techniques and RFQ manufacturing issues are discussed.Comment: 4 pages, 8 figures, Proceedings of the 2nd International Beam Instrumentation Conference 2013 (IBIC'13), 16-19 Sep 2013, WEPC02, p. 65

    Evidence for xi- and t-dependent damping of the Pomeron Flux in the proton

    Full text link
    We show that a triple-Regge parametrization of inclusive single diffraction agrees with the data in the following two domains: (a) xi > 0.03 at all t, (b) |t| > 1 GeV^2 at all xi. Since the triple-Regge parametrization fails when applied to the full xi-t range of the total single-diffractive cross section, we conclude that damping occurs only at low-xi and low-|t|. We give a (``toy'') parametrization of the damping factor, D(xi), valid at low-|t|, which describes the diffractive differential cross-section (dsig/dt) data at the ISR and roughly accounts for the observed s-dependence of diffractive total cross-section up to Tevatron energies. However, an effective damping factor calculated for the CDF fitted function for dsig/dxidt at sqrt(s} = 1800 GeV and |t| = 0.05 GeV^2, suggests that, at fixed-xi, damping increases as s increases. We conjecture that, in the regions where the triple-Regge formalism describes the data and there is no evidence of damping, factorization is valid and the Pomeron-flux-factor may be universal. With the assumption that the observed damping is due to multi-Pomeron exchange, our results imply that the recent UA8 demonstration that the effective Pomeron trajectory flattens for |t| > 1 GeV$^2 is evidence for the onset of the perturbative 2-gluon pomeron. Our damping results may also shed some light on the self-consistency of recent measurements of hard-diffractive jet production cross sections in the UA8, CDF and ZEUS experiments.Comment: 19 pages, 7 Encapsulated Postscript figures, LaTex, Phys. Lett. B (in press - 1998

    Stent thrombosis in patients with drug-eluting stents and bioresorbable vascular scaffolds

    Get PDF
    The percutaneous coronary intervention has undergone rapid evolution over the last 40 years and has become one of the most widely performed medical procedures. The introduction of intracoronary stents improved the safety and efficacy of percutaneous coronary intervention. But with the advent of stenting, a new potentially fatal enemy emerged: stent thrombosis. Ever since, adjunct pharmacological therapy, stent technique and technology have been adjusted to reduce the risk of stent thrombosis. The aim of the present article is to provide an overview of past, present and future aspects of percutaneous intervention in relation to stent thrombosis

    ReSolVe project – Restoring optimal Soil functionality in degraded areas within organic Vineyards

    Get PDF
    In both conventional and organic European vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality. These problems are very often related to sub-optimal soil functionality, caused by an improper land preparation before vine plantation and/or management. Different causes for soil malfunctioning can include: poor organic matter content and plant nutrient availability (both major and trace elements); imbalance of some element ratios (Ca/Mg, K/Mg, P/Fe, and Fe/Mn); pH; water deficiency; soil compaction and/or scarce oxygenation. Fertility related problems can often be compensated in conventional settings with externally introduced fertilizers that are not permitted in organic vineyards. ReSolVe is a transnational and multidisciplinary research project aimed at testing the effects of selected agronomic strategies for restoring optimal soil functionality in degraded areas within organic vineyard. The term "degraded areas within vineyard" means areas showing reduced vine growth, disease resistance, grape yield and quality. These areas may have lost their soil functionality because of either an improper land preparation, or an excessive loss of soil organic matter and nutrients, erosion and/or compaction. The project, financed by Core-Organic plus program of the ERA-NET plus action (2015-2018), aims at identifying the main causes of the soil functionality loss and testing different organic recovering methods. The different restoring strategies will implement: i) compost, ii) green manure with winter legumes, iii) dry mulching with cover crops. The strategies will be tested according to their efficiency to improve: i) plant and roots growth and well-being; ii) grape yield and quality; iii) quality of soil ecosystem services and their stability over the years; iv) better express of the “terroir effect”, that is, the linkage of wine quality to the environmental characteristics of the cultivation site. The project involves 8 research groups in 6 different EU countries (Italy, France, Spain, Sweden, Slovenia, and Turkey), with experts from several disciplines, including soil science, ecology, microbiology, grapevine physiology, viticulture, and biometry. The experimental vineyards are situated in Italy (Chianti hills and Maremma plain, Tuscany), France (Bordeaux and Languedoc), Spain (La Rioja) and Slovenia (Primorska) for winegrape, and in Turkey (Adana and Mersin) for table grape. The restoration techniques and the monitoring methodologies developed and tested during the ReSolVe project will be described in specific final guidelines. The restoration techniques will be accessible for all the European farmers and will be low cost and environmental-friendly. A protocol of analyses and measurements between the all partners will allow an effective and comparable monitoring of vineyard ecosystemic functioning in European countries

    Measurement of Forward Jets Produced in High-Transverse-Momentum Hadron-Proton Collisions

    Get PDF
    A measurement of charged-particle production is reported for the forward region in events triggered by high-transverse-momentum (p⊥) jets and single particles. The momentum distributions of forward-going particles are observed to scale in a simple p⊥-dependent longitudinal variable. Forward-going (beam) jets are observed to be tilted away from the original direction by an amount which agrees with muon-pair data when interpreted in a parton (quantum-chromodynamics) model
    corecore