36 research outputs found

    Mutation Frequency of the Major Frontotemporal Dementia Genes, MAPT, GRN and C9ORF72 in a Turkish Cohort of Dementia Patients

    Get PDF
    ‘Microtubule-associated protein tau’ (MAPT), ‘granulin’ (GRN) and ‘chromosome 9 open reading frame72’ (C9ORF72) gene mutations are the major known genetic causes of frontotemporal dementia (FTD). Recent studies suggest that mutations in these genes may also be associated with other forms of dementia. Therefore we investigated whether MAPT, GRN and C9ORF72 gene mutations are major contributors to dementia in a random, unselected Turkish cohort of dementia patients. A combination of whole-exome sequencing, Sanger sequencing and fragment analysis/Southern blot was performed in order to identify pathogenic mutations and novel variants in these genes as well as other FTD-related genes such as the ‘charged multivesicular body protein 2B’ (CHMP2B), the ‘FUS RNA binding protein’ (FUS), the ‘TAR DNA binding protein’ (TARDBP), the ‘sequestosome1’ (SQSTM1), and the ‘valosin containing protein’ (VCP). We determined one pathogenic MAPT mutation (c.1906C>T, p.P636L) and one novel missense variant (c.38A>G, p.D13G). In GRN we identified a probably pathogenic TGAG deletion in the splice donor site of exon 6. Three patients were found to carry the GGGGCC expansions in the non-coding region of the C9ORF72 gene. In summary, a complete screening for mutations in MAPT, GRN and C9ORF72 genes revealed a frequency of 5.4% of pathogenic mutations in a random cohort of 93 Turkish index patients with dementia

    Peripheral GRN mRNA and Serum Progranulin Levels as a Potential Indicator for Both the Presence of Splice Site Mutations and Individuals at Risk for Frontotemporal Dementia

    Get PDF
    Progranulin (GRN) gene mutations are a major cause of frontotemporal dementia (FTD). Most mutations identified to date are null mutations, which are predicted to cause the pathology via haploinsufficiency. Decreased peripheral progranulin protein (PGRN) levels are associated with the presence of GRN null mutations and are accepted as reliable biomarkers. In this study, our aim was to test whether the presence of specific GRN splice site mutations (c.– 8+2T>G and c.708+6_9del), could be predicted by peripheral mRNA or protein GRN levels, by studying affected and asymptomatic individuals from FTD families. We also tested four missense GRN variants to assess if altered GRN levels depended on the type of mutation. Our results confirmed a reduction in both mRNA and protein PGRN levels in the splice site mutation carriers, which is consistent with previous reports for null mutations. Our results also suggested that both decreased peripheral GRN mRNA and serum PGRN levels indicate the presence of pathogenic mutations in affected individuals, and identify the asymptomatic individuals at risk, without previous knowledge of genetic status. Both inferences suggest a potential use of peripheral GRN mRNA or serum PGRN levels as biomarkers for families with FTD

    Mutations in TYROBP are not a common cause of dementia in a Turkish cohort

    Get PDF
    Mutations in TYROBP and TREM2 have been shown to cause polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy. Recently, variants in TREM2 were also associated with frontotemporal dementia and Alzheimer's disease. Given the functional proximity between these 2 genes, we investigated the genetic variation of TYROBP in a Turkish cohort of 103 dementia patients. No mutations or copy number variants predicted to be pathogenic were identified. These results indicate that mutations in TYROBP are not a common cause of dementia in this Turkish cohort

    The effect of angiotensin converting enzyme gene polymorphism on chronic allograft dysfunction in living donor renal transplant recipients

    No full text
    Background. Chronic allograft dysfunction (CAD), the major cause of the failure of kidney allografts, may be caused by immunological and non-immuno logical haemodynamic factors. Renin-angiotensin system has been implicated in the development of intraglomerular hypertension and has a central role on progression in chronic renal disease. Polymorphism in 16th intron of the ACE gene has been reported to predict the circulating angiotensin 11 levels. The aim of this study was to investigate the effect of the both recipient and donor angiotensin converting enzyme (ACE) genotype on the development of CAD in renal allograft recipients

    High Serum Apolipoprotein E Determines Hypertriglyceridemic Dyslipidemias, Coronary Disease and ApoA-I Dysfunctionality

    No full text
    The relevance of serum apolipoprotein E (apoE) levels to two hypertriglyceridemic dyslipidemias has not been clarified. We explored, in a cross-sectional (and short-term prospective) evaluation, the independent relationship of serum apoE to the atherogenic dyslipidemia, hypertriglyceridemia with elevated apoB (HtgB) and to apoA-I dysfunctionality, previously shown in Turkish adults to be independent of apoE genotype. Serum apoE concentrations were measured by immunonephelometry in 1,127 middle-aged adults. In multivariable regression analysis, apoE concentrations showed log-linear associations with apoB and apoA-I levels, waist circumference, independent of C-reactive protein (CRP), homeostatic model assessment (HOMA) index and other confounders. The likelihood of atherogenic dyslipidemia and of HtgB roughly tripled per 1-SD increment in apoE concentrations, additively to apoE genotype, HOMA, apoA-I, CRP concentrations and waist circumference; yet apoA-I, protective against atherogenic dyslipidemia, appeared to promote HtgB, a finding consistent with apoA-I dysfunctionality in this setting. Each 1-SD increment in the apoE level was moreover, associated in both genders with MetS (at OR 1.5), after adjustment for sex, age, apoB, apoA-I and CRP, or for apoE genotypes. Circulating apoE predicted in both genders age-adjusted prevalent and incident coronary heart disease (CHD), independent of apoE genotype and CRP (OR 1.32 [95 % CI 1.11; 1.58]). To conclude, in a general population prone to MetS, elevated apoE concentrations are strongly linked to HtgB and atherogenic dyslipidemia, irrespective of apoE genotype, are associated with MetS and CHD. Excess apoE reflects pro-inflammatory state and likely autoimmune activation
    corecore