1,565 research outputs found

    Enhanced Pairing in the "Checkerboard" Hubbard Ladder

    Full text link
    We study signatures of superconductivity in a 2--leg "checkerboard" Hubbard ladder model, defined as a one--dimensional (period 2) array of square plaquettes with an intra-plaquette hopping tt and inter-plaquette hopping t′t', using the density matrix renormalization group method. The highest pairing scale (characterized by the spin gap or the pair binding energy, extrapolated to the thermodynamic limit) is found for doping levels close to half filling, U≈6tU\approx 6t and t′/t≈0.6t'/t \approx 0.6. Other forms of modulated hopping parameters, with periods of either 1 or 3 lattice constants, are also found to enhance pairing relative to the uniform two--leg ladder, although to a lesser degree. A calculation of the phase stiffness of the ladder reveals that in the regime with the strongest pairing, the energy scale associated with phase ordering is comparable to the pairing scale.Comment: 9 pages, 9 figures; Journal reference adde

    Restrained Shrinkage of Fly Ash Based Geopolymer Concrete and Analysis of Long Term Shrinkage Prediction Models

    Get PDF
    The research presented in this manuscript describes the procedure to quantify the restrained shrinkage of geopolymer concrete (GPC) using ring specimen. Massive concrete structures are susceptible to shrinkage and thermal cracking. This cracking can increase the concrete permeability and decrease the strength and design life. This test is comprised of evaluating geopolymer concrete of six different mix designs including different activator solution to fly ash ratio and subjected to both restrained and free shrinkage. Test results obtained from this experimental setup was plotted along with the available empirical equation to observe the shrinkage strain of GPC and a model was suggested to predict the shrinkage strain of GPC. It was found from this study that along with activator solution to fly ash ratio the final compressive strength of GPC plays an important role on shrinkage strai

    Superconductivity in zigzag CuO chains

    Full text link
    Superconductivity has recently been discovered in Pr2_{2}Ba4_{4}Cu7_{7}O15−δ_{15-\delta} with a maximum TcT_c of about 15K. Since the CuO planes in this material are believed to be insulating, it has been proposed that the superconductivity occurs in the double (or zigzag) CuO chain layer. On phenomenological grounds, we propose a theoretical interpretation of the experimental results in terms of a new phase for the zigzag chain, labelled by C1_1S3/2_{3/2}. This phase has a gap for some of the relative spin and charge modes but no total spin gap, and can have a divergent superconducting susceptibility for repulsive interactions. A microscopic model for the zigzag CuO chain is proposed, and on the basis of density matrix renormalization group (DMRG) and bosonization studies of this model, we adduce evidence that supports our proposal.Comment: 10 pages, 5 figures; Journal-ref. adde

    Ethical Perspectives and Practice Behaviors Involving Computer-Based Test Interpretation

    Full text link
    The debates of the 1980s regarding responsible use of computer-based test interpretation (CBTI) software have mostly disappeared, as CBTI use has become common practice. We surveyed 364 members of the Society for Personality Assessment to determine how they use CBTI software in their work and their perspectives on the ethics of using CBTI in various ways. Psychologists commonly use CBTI software for test scoring and to provide a complementary source of input for case formulations. Most do not use CBTI software as the primary way to formulate a case, nor as an alternative to a written report. Controversy and uncertainty were expressed about importing sections of CBTI narratives into psychological reports. We distinguish between support and replacement functions of CBTI use, arguing that adequate research evidence should be present before using CBTI as a replacement for established assessment procedures

    Phases of the infinite U Hubbard model

    Full text link
    We apply the density matrix renormalization group (DMRG) to study the phase diagram of the infinite U Hubbard model on 2-, 4-, and 6-leg ladders. Where the results are largely insensitive to the ladder width, we consider the results representative of the 2D square lattice model. We find a fully polarized ferromagnetic Fermi liquid phase when n, the density of electrons per site, is in the range 1>n>n_F ~ 4/5. For n=3/4 we find an unexpected commensurate insulating "checkerboard" phase with coexisting bond density order with 4 sites per unit cell and block spin antiferromagnetic order with 8 sites per unit cell. For 3/4 > n, the wider ladders have unpolarized groundstates, which is suggestive that the same is true in 2D

    Possible way out of the Hawking paradox: Erasing the information at the horizon

    Full text link
    We show that small deviations from spherical symmetry, described by means of exact solutions to Einstein equations, provide a mechanism to "bleach" the information about the collapsing body as it falls through the aparent horizon, thereby resolving the information loss paradox. The resulting picture and its implication related to the Landauer's principle in the presence of a gravitational field, is discussed.Comment: 11 pages, Latex. Some comments added to answer to some raised questions. Typos corected. Final version, to appear in Int. J. Modern. Phys.

    Theory of the striped superconductor

    Full text link
    We define a distinct phase of matter, a "pair density wave" (PDW), in which the superconducting order parameter ϕ\phi varies periodically as a function of position such that when averaged over the center of mass position, all components of ϕ\phi vanish identically. Specifically, we study the simplest, unidirectional PDW, the "striped superconductor," which we argue may be at the heart of a number of spectacular experimental anomalies that have been observed in the failed high temperature superconductor, La2−x_{2-x} Bax_xCuO4_4. We present a solvable microscopic model with strong electron-electron interactions which supports a PDW groundstate. We also discuss, at the level of Landau theory, the nature of the coupling between the PDW and other order parameters, and the origins and some consequences of the unusual sensitivity of this state to quenched disorder.Comment: 16 pages, 3 figures, 1 table; Journal ref. adde

    Preferential attachment in the protein network evolution

    Full text link
    The Saccharomyces cerevisiae protein-protein interaction map, as well as many natural and man-made networks, shares the scale-free topology. The preferential attachment model was suggested as a generic network evolution model that yields this universal topology. However, it is not clear that the model assumptions hold for the protein interaction network. Using a cross genome comparison we show that (a) the older a protein, the better connected it is, and (b) The number of interactions a protein gains during its evolution is proportional to its connectivity. Therefore, preferential attachment governs the protein network evolution. The evolutionary mechanism leading to such preference and some implications are discussed.Comment: Minor changes per referees requests; to appear in PR

    The ground states of the two-component order parameter superconductor

    Full text link
    We show that in presence of an applied external field the two-component order parameter superconductor falls in two categories of ground states, namely, in the traditional Abrikosov ground state or in a new ground state fitted to describe a superconducting layer with texture, that is, patched regions separated by a phase difference of π\pi. The existence of these two kinds of ground states follows from the sole assumption that the total supercurrent is the sum of the two individual supercurrents and is independent of any consideration about the free energy expansion. Uniquely defined relations between the current density and the superfluid density hold for these two ground states, which also determine the magnetization in terms of average values of the order parameters. Because these ground state conditions are also Bogomolny equations we construct the free energy for the two-component superconductor which admits the Bogomolny solution at a special coupling value.Comment: 5 page
    • …
    corecore