1,287 research outputs found
On the "spin-freezing" mechanism in underdoped superconducting cuprates
The letter deals with the spin-freezing process observed by means of NMR-NQR
relaxation or by muon spin rotation in underdoped cuprate superconductors. This
phenomenon, sometimes referred as coexistence of antiferromagnetic and
superconducting order parameters, is generally thought to result from randomly
distributed magnetic moments related to charge inhomogeneities (possibly
stripes) which exhibit slowing down of their fluctuations on cooling below
T . Instead, we describe the experimental findings as due to fluctuating,
vortex-antivortex, orbital currents state coexisting with d-wave
superconducting state. A direct explanation of the experimental results, in
underdoped YCaBaCuO and LaSrCuO,
is thus given in terms of freezing of orbital current fluctuations
Temperature Dependence of the Cu(2) NQR Line Width in YBaCuO
Systematic measurements of the Cu(2) NQR line width were performed in
underdoped YBaCuO samples over the temperature range 4.2 K
K. It was shown that the copper NQR line width monotonically increases
upon lowering temperature in the below-critical region, resembling temperature
behavior of the superconducting gap. The observed dependence is explained by
the fact that the energy of a condensate of sliding charge-current states of
the charge-density-wave type depends on the phase of order parameter.
Calculations show that this dependence appears only at . Quantitative
estimates of the line broadening at agree with the measurement results.Comment: 4 pages, 2 figure
Polaron Effects on Superexchange Interaction: Isotope Shifts of , , and in Layered Copper Oxides
A compact expression has been obtained for the superexchange coupling of
magnetic ions via intermediate anions with regard to polaron effects at both
magnetic ions and intermediate anions. This expression is used to analyze the
main features of the behavior of isotope shifts for temperatures of three types
in layered cuprates: the Neel temperatures (), critical temperatures of
transitions to a superconducting state (), and characteristic temperatures
of the pseudogap in the normal state ().Comment: 4 pages, 1 figur
Possible isotope effect on the resonance peak formation in high-T cuprates
Starting from the three-band Hubbard Hamiltonian we derive an effective
model including electron-phonon interaction of quasiparticles with
optical phonons. Within the effective Hamiltonian we analyze the influence of
electronic correlations and electron-phonon interaction on the dynamical spin
susceptibility in layered cuprates. We find a huge isotope effect on the
resonance peak in the magnetic spin susceptibility, ,
seen by inelastic neutron scattering. It results from both the electron-phonon
coupling and the electronic correlation effects taken into account beyond
random phase approximation(RPA) scheme. We find at optimal doping the isotope
coeffiecient which can be further tested
experimentally.Comment: revised version, new figure is added. Phys. Rev. B 69, 0945XX (2004);
in pres
Network patterns and strength of orbital currents in layered cuprates
In a frame of the model we derive the microscopical expression for
the circulating orbital currents in layered cuprates using the anomalous
correlation functions. In agreement with -on spin relaxation (SR),
nuclear quadrupolar resonance (NQR) and inelastic neutron scattering(INS)
experiments in YBaCuO we successfully explain the order of
magnitude and the monotonous increase of the {\it internal} magnetic fields
resulting from these currents upon cooling. However, the jump in the intensity
of the magnetic fields at T reported recently seems to indicate a
non-mean-field feature in the coexistence of current and superconducting states
and the deviation of the extended charge density wave vector instability from
its commensurate value {\bf Q}) in accordance with the
reported topology of the Fermi surface
- …