822 research outputs found
Recommendation Subgraphs for Web Discovery
Recommendations are central to the utility of many websites including
YouTube, Quora as well as popular e-commerce stores. Such sites typically
contain a set of recommendations on every product page that enables visitors to
easily navigate the website. Choosing an appropriate set of recommendations at
each page is one of the key features of backend engines that have been deployed
at several e-commerce sites.
Specifically at BloomReach, an engine consisting of several independent
components analyzes and optimizes its clients' websites. This paper focuses on
the structure optimizer component which improves the website navigation
experience that enables the discovery of novel content.
We begin by formalizing the concept of recommendations used for discovery. We
formulate this as a natural graph optimization problem which in its simplest
case, reduces to a bipartite matching problem. In practice, solving these
matching problems requires superlinear time and is not scalable. Also,
implementing simple algorithms is critical in practice because they are
significantly easier to maintain in production. This motivated us to analyze
three methods for solving the problem in increasing order of sophistication: a
sampling algorithm, a greedy algorithm and a more involved partitioning based
algorithm.
We first theoretically analyze the performance of these three methods on
random graph models characterizing when each method will yield a solution of
sufficient quality and the parameter ranges when more sophistication is needed.
We complement this by providing an empirical analysis of these algorithms on
simulated and real-world production data. Our results confirm that it is not
always necessary to implement complicated algorithms in the real-world and that
very good practical results can be obtained by using heuristics that are backed
by the confidence of concrete theoretical guarantees
Charged particle environment of Titan during the T9 flyby
The ion measurements of the Cassini Plasma Spectrometer are presented which were acquired on 26 December 2005, during the T9 flyby at Titan. The plasma flow and magnetic field directions in the distant plasma environment of the moon were distinctly different from the other flybys. The near-Titan environment, dominated by ions of Titan origin, had a split signature, each with different ion composition; the first region was dominated by dense, slow, and cold ions in the 16-19 and 28-40 amu mass range, the second region contained only ions with mass 1 and 2, much less dense and less slow. Magnetospheric ions penetrate marginally into region 1, whereas the region-2 ion population is mixed. A detailed analysis has led us to conclude that the first event was due to the crossing of the mantle of Titan, whereas the second one very likely was a wake crossing. The split indicates the non-convexity of the ion-dominated volume around Titan. Both ion distributions are analysed in detail
A cluster expansion approach to exponential random graph models
The exponential family of random graphs is among the most widely-studied
network models. We show that any exponential random graph model may
alternatively be viewed as a lattice gas model with a finite Banach space norm.
The system may then be treated by cluster expansion methods from statistical
mechanics. In particular, we derive a convergent power series expansion for the
limiting free energy in the case of small parameters. Since the free energy is
the generating function for the expectations of other random variables, this
characterizes the structure and behavior of the limiting network in this
parameter region.Comment: 15 pages, 1 figur
Chern-Simons action for zero-mode supporting gauge fields in three dimensions
Recent results on zero modes of the Abelian Dirac operator in three
dimensions support to some degree the conjecture that the Chern-Simons action
admits only certain quantized values for gauge fields that lead to zero modes
of the corresponding Dirac operator. Here we show that this conjecture is wrong
by constructing an explicit counter-example.Comment: version as published in PRD, minor change
Correlation, Network and Multifractal Analysis of Global Financial Indices
We apply RMT, Network and MF-DFA methods to investigate correlation, network
and multifractal properties of 20 global financial indices. We compare results
before and during the financial crisis of 2008 respectively. We find that the
network method gives more useful information about the formation of clusters as
compared to results obtained from eigenvectors corresponding to second largest
eigenvalue and these sectors are formed on the basis of geographical location
of indices. At threshold 0.6, indices corresponding to Americas, Europe and
Asia/Pacific disconnect and form different clusters before the crisis but
during the crisis, indices corresponding to Americas and Europe are combined
together to form a cluster while the Asia/Pacific indices forms another
cluster. By further increasing the value of threshold to 0.9, European
countries France, Germany and UK constitute the most tightly linked markets. We
study multifractal properties of global financial indices and find that
financial indices corresponding to Americas and Europe almost lie in the same
range of degree of multifractality as compared to other indices. India, South
Korea, Hong Kong are found to be near the degree of multifractality of indices
corresponding to Americas and Europe. A large variation in the degree of
multifractality in Egypt, Indonesia, Malaysia, Taiwan and Singapore may be a
reason that when we increase the threshold in financial network these countries
first start getting disconnected at low threshold from the correlation network
of financial indices. We fit Binomial Multifractal Model (BMFM) to these
financial markets.Comment: 32 pages, 25 figures, 1 tabl
An estimate for the average spectral measure of random band matrices
For a class of random band matrices of band width , we prove regularity of
the average spectral measure at scales , and find its
asymptotics at these scales.Comment: 19 pp., revised versio
Clustering Phase Transitions and Hysteresis: Pitfalls in Constructing Network Ensembles
Ensembles of networks are used as null models in many applications. However,
simple null models often show much less clustering than their real-world
counterparts. In this paper, we study a model where clustering is enhanced by
means of a fugacity term as in the Strauss (or "triangle") model, but where the
degree sequence is strictly preserved -- thus maintaining the quenched
heterogeneity of nodes found in the original degree sequence. Similar models
had been proposed previously in [R. Milo et al., Science 298, 824 (2002)]. We
find that our model exhibits phase transitions as the fugacity is changed. For
regular graphs (identical degrees for all nodes) with degree k > 2 we find a
single first order transition. For all non-regular networks that we studied
(including Erdos - Renyi and scale-free networks) we find multiple jumps
resembling first order transitions, together with strong hysteresis. The latter
transitions are driven by the sudden emergence of "cluster cores": groups of
highly interconnected nodes with higher than average degrees. To study these
cluster cores visually, we introduce q-clique adjacency plots. We find that
these cluster cores constitute distinct communities which emerge spontaneously
from the triangle generating process. Finally, we point out that cluster cores
produce pitfalls when using the present (and similar) models as null models for
strongly clustered networks, due to the very strong hysteresis which
effectively leads to broken ergodicity on realistic time scales.Comment: 13 pages, 11 figure
A Hamiltonian approach for explosive percolation
We introduce a cluster growth process that provides a clear connection
between equilibrium statistical mechanics and an explosive percolation model
similar to the one recently proposed by Achlioptas et al. [Science 323, 1453
(2009)]. We show that the following two ingredients are essential for obtaining
an abrupt (first-order) transition in the fraction of the system occupied by
the largest cluster: (i) the size of all growing clusters should be kept
approximately the same, and (ii) the inclusion of merging bonds (i.e., bonds
connecting vertices in different clusters) should dominate with respect to the
redundant bonds (i.e., bonds connecting vertices in the same cluster).
Moreover, in the extreme limit where only merging bonds are present, a complete
enumeration scheme based on tree-like graphs can be used to obtain an exact
solution of our model that displays a first-order transition. Finally, the
proposed mechanism can be viewed as a generalization of standard percolation
that discloses an entirely new family of models with potential application in
growth and fragmentation processes of real network systems.Comment: 4 pages, 4 figure
Random Topologies and the emergence of cooperation: the role of short-cuts
We study in detail the role of short-cuts in promoting the emergence of
cooperation in a network of agents playing the Prisoner's Dilemma Game (PDG).
We introduce a model whose topology interpolates between the one-dimensional
euclidean lattice (a ring) and the complete graph by changing the value of one
parameter (the probability p to add a link between two nodes not already
connected in the euclidean configuration). We show that there is a region of
values of p in which cooperation is largely enhanced, whilst for smaller values
of p only a few cooperators are present in the final state, and for p
\rightarrow 1- cooperation is totally suppressed. We present analytical
arguments that provide a very plausible interpretation of the simulation
results, thus unveiling the mechanism by which short-cuts contribute to promote
(or suppress) cooperation
Temporal Series Analysis Approach to Spectra of Complex Networks
The spacing of nearest levels of the spectrum of a complex network can be
regarded as a time series. Joint use of Multi-fractal Detrended Fluctuation
Approach (MF-DFA) and Diffusion Entropy (DE) is employed to extract
characteristics from this time series. For the WS (Watts and Strogatz)
small-world model, there exist a critical point at rewiring probability . For a
network generated in the range, the correlation exponent is in the range of .
Above this critical point, all the networks behave similar with that at . For
the ER model, the time series behaves like FBM (fractional Brownian motion)
noise at . For the GRN (growing random network) model, the values of the
long-range correlation exponent are in the range of . For most of the GRN
networks the PDF of a constructed time series obeys a Gaussian form. In the
joint use of MF-DFA and DE, the shuffling procedure in DE is essential to
obtain a reliable result. PACS number(s): 89.75.-k, 05.45.-a, 02.60.-xComment: 10 pages, 9 figures, to appear in PR
- …