21 research outputs found

    Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent

    Get PDF
    Neurotransmitter release at most central synapses is synchronized to the timing of presynaptic action potentials. Here we show that 3 classes of DSI-expressing, CCK-containing, hippocampal interneurons show highly asynchronous release in response to trains of action potentials. This asynchrony is correlated to the class of presynaptic interneuron but is unrelated to their postsynaptic cell target. Asynchronous- and synchronous release from CCK-containing interneurons show a slightly different calcium dependence such that the proportion of asynchronous release increases with external calcium concentration possibly suggesting that the modes of release are mediated by different calcium sensors. Asynchronous IPSCs include very large (up to 500 pA/7nS) amplitude events, which persist in low extracellular calcium and strontium, showing that they result from quantal transmitter release at single release sites. Finally we show that asynchronous release is prominent in response to trains of presynaptic spikes which mimic natural activity of CCK-containing interneurons. That asynchronous release from CCK-containing interneurons is a widespread phenomenon indicates a fundamental role for these cells within the hippocampal network that is distinct from the phasic inhibition provided by PV-containing interneurons

    Tuning afferent synapses of hippocampal interneurons by neuropeptide Y.

    No full text
    Cholecystokinin (CCK)-expressing basket cells encompass a subclass of inhibitory GABAergic interneurons that regulate memory-forming oscillatory network activity of the hippocampal formation in accordance to the emotional and motivational state of the animal, conveyed onto these cells by respective extrahippocampal afferents. Various excitatory and inhibitory afferent and efferent synapses of the hippocampal CCK basket cells express serotoninergic, cholinergic, cannabinoid, and benzodiazepine sensitive receptors, all contributing to their functional plasticity. We explored whether CCK basket cells are modulated by neuropeptide Y (NPY), one of the major local neuropeptides that strongly inhibits hippocampal excitability and has significant effect on its memory function. Here, using GAD65-GFP transgenic mice for prospective identification of CCK basket cells and whole-cell patch-clamp recordings, we show for the first time that excitatory and inhibitory inputs onto CCK basket cells in the dentate gyrus of the hippocampus are modulated by NPY through activation of NPY Y2 receptors. The frequency of spontaneous and miniature EPSCs, as well as the amplitudes of stimulation-evoked EPSCs were decreased. Similarly, the frequency of both spontaneous and miniature IPSCs, and the amplitudes of stimulation-evoked IPSCs were decreased after NPY application. Most of the effects of NPY could be attributed to a presynaptic site of action. Our data provide the first evidence that the excitatory and inhibitory inputs onto the CCK basket cells could be modulated by local levels of NPY, and may change the way these cells process extrahippocampal afferent information, influencing hippocampal function and its network excitability during normal and pathological oscillatory activities. (c) 2009 Wiley-Liss, Inc

    Altered profile of basket cell afferent synapses in hyper-excitable dentate gyrus revealed by optogenetic and two-pathway stimulations.

    No full text
    Cholecystokinin (CCK-) positive basket cells form a distinct class of inhibitory GABAergic interneurons, proposed to act as fine-tuning devices of hippocampal gamma-frequency (30-90 Hz) oscillations, which can convert into higher frequency seizure activity. Therefore, CCK-basket cells may play an important role in regulation of hyper-excitability and seizures in the hippocampus. In normal conditions, the endogenous excitability regulator neuropeptide Y (NPY) has been shown to modulate afferent inputs onto dentate gyrus CCK-basket cells, providing a possible novel mechanism for excitability control in the hippocampus. Using GAD65-GFP mice for CCK-basket cell identification, and whole-cell patch-clamp recordings, we explored whether the effect of NPY on afferent synapses to CCK-basket cells is modified in the hyper-excitable dentate gyrus. To induce a hyper-excitable state, recurrent seizures were evoked by electrical stimulation of the hippocampus using the well-characterized rapid kindling protocol. The frequency of spontaneous and miniature excitatory and inhibitory post-synaptic currents recorded in CCK-basket cells was decreased by NPY. The excitatory post-synaptic currents evoked in CCK-basket cells by optogenetic activation of principal neurons were also decreased in amplitude. Interestingly, we observed an increased proportion of spontaneous inhibitory post-synaptic currents with slower rise times, indicating that NPY may inhibit gamma aminobutyric acid release preferentially in peri-somatic synapses. These findings indicate that increased levels and release of NPY observed after seizures can modulate afferent inputs to CCK-basket cells, and therefore alter their impact on the oscillatory network activity and excitability in the hippocampus

    Differential Metabotropic Glutamate Receptor Expression and Modulation in Two Neocortical Inhibitory Networks

    No full text
    Taking advantage of transgenic mice with genetically labeled GABA-releasing interneurons, we examined the cell-specific patterns of mGluR expression in two broadly defined subtypes of inhibitory interneurons in layer IV of somatosensory cortex. Electrophysiological recording combined with application of specific agonists for specific mGluRs demonstrated different effects of mGluR activation in fast-spiking (FS) versus regular spiking nonpyramidal (RSNP) interneurons. Whereas activation of group I, II, and III mGluRs inhibited excitatory synaptic transmission in RSNP neurons predominantly via postsynaptic mechanisms, group I mGluR activation depolarized FS but not RSNP interneurons. Immunoreactivities of mGluR1, mGluR5, mGluR2/3, and mGluR8 exhibited different cellular expression patterns in the two groups of neurons that were not entirely consistent with physiological and pharmacological experiments. Taken together, our data indicate cell and circuit-specific roles for mGluRs in modulating inhibitory circuits in the somatosensory cortex. These results help to reinforce the concept that RSNP and FS cells represent morphologically, physiologically, and functionally distinct groups of interneurons. The results reported here help to increase our understanding of the roles of mGluRs in endogenous glutamatergic-induced plasticity of interneuronal networks

    The Spatiotemporal Segregation of GAD Forms Defines Distinct GABA Signaling Functions in the Developing Mouse Olfactory System and Provides Novel Insights into the Origin and Migration of GnRH Neurons

    No full text
    Gamma-aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate-limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin-releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1-7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock-out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools

    GAD isoforms exhibit distinct spatiotemporal expression patterns in the developing mouse lens: Correlation with Dlx2 and Dlx5

    No full text
    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter of the adult nervous system and its biosynthetic enzyme glutamic acid.. decarboxylase (GAD) are abundantly expressed in the embryonic nervous system and are involved in the modulation of cell proliferation, migration, and differentiation. Here we describe for the first time the expression of GABA and embryonic and adult GAD isoforms in the developing mouse lens. We show that the GAD isoforms are sequentially induced with specific spatiotemporal profiles: GAD65 and embryonic GAD isoforms prevail in primary fibers, while GAD67 is the predominant GAD expressed in the postnatal secondary fibers. This pattern correlates well with the expression of Dlx2 and Dlx5, known as upstream regulators of GAD. GABA and GAD are most abundant at the tips of elongating fibers and are absent from organelle-free cells, suggesting their involvement is primarily in shaping of the cytoskeleton during fiber elongation stages

    Perianal disease, small bowel disease, smoking, prior steroid or early azathioprine/biological therapy are predictors of disease behavior change in patients with Crohn’s disease

    Get PDF
    AIM: To assess the combined effect of disease phenotype, smoking and medical therapy [steroid, azathioprine (AZA), AZA/biological therapy] on the probability of disease behavior change in a Caucasian cohort of patients with Crohn’s disease (CD)
    corecore