7 research outputs found

    Conservation of amphibians and reptiles in Indonesia: issues and problems

    Get PDF
    Indonesia is an archipelagic nation comprising some 17,000 islands of varying sizes and geological origins, as well as marked differences in composition of their floras and faunas. Indonesia is considered one of the megadiversity centers, both in terms of species numbers as well as endemism. According to the Biodiversity Action Plan for Indonesia, 16% of all amphibian and reptile species occur in Indonesia, a total of over 1,100 species. New research activities, launched in the last few years, indicate that these figures may be significantly higher than generally assumed. Indonesia is suspected to host the worldwide highest numbers of amphibian and reptile species. Herpetological research in Indonesia, however, has not progressed at a rate comparable to that of neighboring countries. As a result, the ratio of Indonesian species to the entirety of Southeast Asian and Malesian species has “declined” from about 60% in 1930 to about 50% in 2000, essentially a result of more taxa having been described from areas outside Indonesia. Many of these taxa were subsequently also found in Indonesia. In the last 70 years, 762 new taxa have been described from the Southeast Asia region of which only 262 were from Indonesia. In general, the herpetofauna of Indonesia is poorly understood compared to the herpetofauna of neighboring countries. This refers not only to the taxonomic status, but also to the basic biological and ecological characteristics of most of the species. Moreover, geographic distribution patterns for many species are only poorly known. In view of the alarming rate of forest loss, measures for more effective protection of the herpetofauna of Indonesia are urgently required. The status of virtually all of the Indonesian species, e.g. in terms of IUCN categories, remains unknown, and no action plans have been formulated to date. In addition, research results on Indonesia’s amphibian and reptile fauna have often not been made available in the country itself. Finally, there is a clear need to organize research activities in such a way that a larger segment of the Indonesian population becomes aware of the importance of the herpetofauna as an essential component of the country’s biodiversity. To address these issues, this paper (1) gives an overview of the herpetofauna as part of Indonesia’s biodiversity, (2) outlines the history of herpetological research in the region, (3) identifies major gaps in our knowledge of the Indonesian herpetofauna, and (4) uses this framework for discussing issues and problems of the conservation of amphibians and reptiles in Indonesia. In particular, the contents and shortcomings of compilations of lists of protected or threatened species by national and international authorities are discussed, major threats to the Indonesian herpetofauna or certain components thereof are described, and a set of measures for better longterm conservation is proposed.Abstrak.—Indonesia adalah suatu negara kepulauan yang terdiri dari sekitar 17.000 pulau dengan ukuran bervariasi dan mempunyai asal usul geologi yang kompleks seperti yang terlihat dalam komposisi tumbuhan dan hewannya. Indonesia, sebagai salah satu pusat keanekaragaman yang terbesar di dunia, baik dari segikekayaan alam jenisnya maupun dari segi tingkat endemisitasnya. Menurut Biodiversity Action Plan for Indonesia, 16% dari amfibi dan reptil dunia terdapat di sini, dengan jumlah lebih dari 1100 jenis. Kegiatan penelitian yang dilaksanakan pada masa yang baru lalu menunjukkan bahwa jumlah tersebut di atas masih jauh di bawah keadaan yang sebenarnya. Indonesia mungkin sekali sebuah negara yang mempunyai jumlah amfibi dan reptil terbesar di dunia. Yang patut menjadi pertimbangan ialah bahwa penelitian amfibi dan reptil di Indonesia jauh lebih lambat di bandingkan dengan kemajuan di negara tetangga. Sebagai gambaran, jumlah jenis di Indonesia apabila dibandingkan dengan jumlah jenis di seluruh Asia Tenggara dalam kurun waktu 70 tahun telah merosot dari 60% menjadi 50%. Hal ini terjadi karena jumlah taksa baru kebanyakan ditemukan di luar Indonesia. Banyak diantara jenis-jenis tersebut kemudian ditemukan di Indonesia. Dalam 70 tahun terakhir, 762 jenis taksa dipertelakan dari luar Indonesia dan hanya 262 pertelaan dari Indonesia. Pada umumnya herpetofauna Indonesia tidak banyak dikenal, baik dari segi taksonomi, ciri-ciri biologi maupun ciri-ciri ekologinya. Daerah penyebaran suatu jenis sangat sedikit diketahui. Meninjau dari cepatnya penebangan dan pengalihan fungsi hutan, usaha untuk melindungi komponen biologi (dalam hal ini amfibi dan reptil) sangat diperlukan. Hampir semua status perlindungan baik secara nasional maupun dengan mengikuti kategori IUCN atau CITES tidak banyak diketahui atau dipahami. Kebanyakan informasi mengenai organisme Indonesia sulit diperoleh di dalam eri. Sebagai akibat, maka diperlukan suatu mekanisme untuk mengatur kegiatan penelitian sedemikian rupa sehingga timbul kesadaran bahwa amfibi dan reptil merupakan salah satu komponen yang sangat berharga dari kekayaan keaneka-ragaman Indonesia. Makalah ini memberikan (1) gambaran komponen biodiversitas herpetofauna Indonesia, (2) memaparkan sejarah perkembangan herpetologi di Indonesia, (3) mengidentifikasi kekosongan dalam pengetahuan herpetologi di Indonesia, (4) memaparkan masalah dan jalan keluar dalam konseravsi keanekaragaman herpetofauna Indonesia. Daftar herpetofauna Indonesia yang dilindungi undang-undang, CITES dan IUCN dibahas, hewanhewan yang mulai terancam dan kiat untuk melindunginya dibahas

    Addressing chemical pollution in biodiversity research

    Get PDF
    Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these “triple crises” are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Addressing chemical pollution in biodiversity research

    Get PDF
    Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Conservation of biodiversity in a hotspot: Sri Lanka’s amphibians and reptiles.

    No full text
    Volume: 5Start Page: 33End Page: 5

    Policy options to account for multiple chemical pollutants threatening biodiversity

    No full text
    Chemical pollution poses a threat to biodiversity on a global scale. This has been acknowledged in the Post-2020 Global Biodiversity Framework, which proposes to regulate the release of chemicals to the environment and names specific indicators focusing on pesticides, nutrients and plastic waste. We fully welcome the inclusion of these substances but would like to further emphasize that in order to protect biodiversity from hazardous chemicals, the scope of Target 7 should feature a wider range of pollutants that can contribute to biodiversity loss. We propose the inclusion of non-agricultural biocides, per- and polyfluoroalkyl substances (PFASs), toxic metal(loid)s, and endocrine-disrupting chemicals (EDCs). Furthermore, data on emerging pollutants (e.g., rare earth elements, toxic and persistent industrial chemicals, liquid crystal monomers, pharmaceuticals, personal care products) need to be regularly reviewed with the aim to integrate additional pollutants to Target 7 in the case of biodiversity risk. We suggest to amend Target 7 to postulate the aim for the overall reduction of chemical production and emissions, as well as the addition of the aforementioned substance groups of high concern to biodiversity for integration in the Post-2020 Global Biodiversity Framework. We further elaborate on different strategies for the reduction of emissions of hazardous chemicals through chemical simplification and grouping, reduction of chemicals with non-essential use, and innovative synthesis strategies (e.g., “benign-by-design”). In this context, the full life cycle of chemicals (i.e., production, use, and end of life) needs to be considered. Lastly, we propose to set up transparent data inventories, in cooperation with the industry, to inform about the production, transport and emissions of chemicals, which can serve as a basis for indicators related to monitoring the progress towards achieving the goals set under Target 7.ISSN:2754-700

    Addressing chemical pollution in biodiversity research

    No full text
    Climate change, biodiversity loss and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection
    corecore