435 research outputs found

    Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumeration

    Get PDF
    We study the partition function from random matrix theory using a well known connection to orthogonal polynomials, and a recently developed Riemann-Hilbert approach to the computation of detailed asymptotics for these orthogonal polynomials. We obtain the first proof of a complete large N expansion for the partition function, for a general class of probability measures on matrices, originally conjectured by Bessis, Itzykson, and Zuber. We prove that the coefficients in the asymptotic expansion are analytic functions of parameters in the original probability measure, and that they are generating functions for the enumeration of labelled maps according to genus and valence. Central to the analysis is a large N expansion for the mean density of eigenvalues, uniformly valid on the entire real axis.Comment: 44 pages, 4 figures. To appear, International Mathematics Research Notice

    Topological Phenomena in the Real Periodic Sine-Gordon Theory

    Full text link
    The set of real finite-gap Sine-Gordon solutions corresponding to a fixed spectral curve consists of several connected components. A simple explicit description of these components obtained by the authors recently is used to study the consequences of this property. In particular this description allows to calculate the topological charge of solutions (the averaging of the xx-derivative of the potential) and to show that the averaging of other standard conservation laws is the same for all components.Comment: LaTeX, 18 pages, 3 figure

    Large-N expansion for the time-delay matrix of ballistic chaotic cavities

    Get PDF
    We consider the 1/N-expansion of the moments of the proper delay times for a ballistic chaotic cavity supporting N scattering channels. In the random matrix approach, these moments correspond to traces of negative powers of Wishart matrices. For systems with and without broken time reversal symmetry (Dyson indices β=1 and β=2) we obtain a recursion relation, which efficiently generates the coefficients of the 1/N-expansion of the moments. The integrality of these coefficients and their possible diagrammatic interpretation is discussed

    On Soliton-type Solutions of Equations Associated with N-component Systems

    Full text link
    The algebraic geometric approach to NN-component systems of nonlinear integrable PDE's is used to obtain and analyze explicit solutions of the coupled KdV and Dym equations. Detailed analysis of soliton fission, kink to anti-kink transitions and multi-peaked soliton solutions is carried out. Transformations are used to connect these solutions to several other equations that model physical phenomena in fluid dynamics and nonlinear optics.Comment: 43 pages, 16 figure

    Novel microwave apparatus for breast lesions detection: Preliminary clinical results

    Get PDF
    This paper presents preliminary results of an innovative microwave imaging apparatus for breast lesions detection. Specially, a Huygens Principle based method is employed to process the microwave signals and to build the respective microwave images. The apparatus has been first tested on phantoms. Next, its performance has been verified through clinical examinations on 22 healthy breasts and on 29 breast having lesions, using as gold standard the output of the radiologist study review obtained using conventional techniques. Specifically, we introduce a metric, which is the ratio between maximum and average of the image intensity (MAX/AVG). We found that MAX/AVG of microwave images can be used for classifying breasts containing lesions. In addition, using MAX/AVG as classification parameter, receiver operating characteristic curves have been empirically determined. Furthermore, for one randomly selected breast having lesion, we have demonstrated that the localisation of the inclusion acquired through microwave imaging is compatible with mammography images

    Large N expansion of the 2-matrix model

    Get PDF
    We present a method, based on loop equations, to compute recursively all the terms in the large NN topological expansion of the free energy for the 2-hermitian matrix model. We illustrate the method by computing the first subleading term, i.e. the free energy of a statistical physics model on a discretized torus.Comment: 41 pages, 9 figures eps
    • …
    corecore