601 research outputs found

    Heat transfer and Fourier's law in off-equilibrium systems

    Get PDF
    We study the most suitable procedure to measure the effective temperature in off-equilibrium systems. We analyze the stationary current established between an off-equilibrium system and a thermometer and the necessary conditions for that current to vanish. We find that the thermometer must have a short characteristic time-scale compared to the typical decorrelation time of the glassy system to correctly measure the effective temperature. This general conclusion is confirmed analyzing an ensemble of harmonic oscillators with Monte Carlo dynamics as an illustrative example of a solvable model of a glass. We also find that the current defined allows to extend Fourier's law to the off-equilibrium regime by consistently defining effective transport coefficients. Our results for the oscillator model explain why thermal conductivities between thermalized and frozen degrees of freedom in structural glasses are extremely small.Comment: 7 pages, REVTeX, 4 eps figure

    Radiation in Lorentz violating electrodynamics

    Full text link
    Synchrotron radiation is analyzed in the classical effective Lorentz invariance violating model of Myers-Pospelov. Within the full far-field approximation we compute the electric and magnetic fields, the angular distribution of the power spectrum and the total emitted power in the m-th harmonic, as well as the polarization. We find the appearance of rather unexpected and large amplifying factors, which go together with the otherwise negligible naive expansion parameter. This opens up the possibility of further exploring Lorentz invariance violations by synchrotron radiation measurements in astrophysical sources where these amplifying factors are important.Comment: Presented at the Second Mexican Meeting on Theoretical and Experimental Physics, El Colegio Nacional, Mexico City, 6-10 September 200

    Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways

    Full text link
    It is well known that the third-order Lorentz-Dirac equation admits runaway solutions wherein the energy of the particle grows without limit, even when there is no external force. These solutions can be denied simply on physical grounds, and on the basis of careful analysis of the correspondence between classical and quantum theory. Nonetheless, one would prefer an equation that did not admit unphysical behavior at the outset. Such an equation - an integro-differential version of the Lorentz-Dirac equation - is currently available either in 1 dimension only, or in 3 dimensions only in the non-relativistic limit. It is shown herein how the Lorentz-Dirac equation may be integrated without approximation, and is thereby converted to a second-order integro-differential equation in 3D satisfying the above requirement. I.E., as a result, no additional constraints on the solutions are required because runaway solutions are intrinsically absent. The derivation is placed within the historical context established by standard works on classical electrodynamics by Rohrlich, and by Jackson.Comment: (updated journal reference & email address

    Limits on models of the ultrahigh energy cosmic rays based on topological defects

    Get PDF
    An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10¹⁶GeV and higher.R. J. Protheroe and Todor Stane

    The nature of the highest energy cosmic rays

    Get PDF
    Ultra high energy gamma rays produce electron--positron pairs in interactions on the geomagnetic field. The pair electrons suffer magnetic bremsstrahlung and the energy of the primary gamma ray is shared by a bunch of lower energy secondaries. These processes reflect the structure of the geomagnetic field and cause experimentally observable effects. The study of these effects with future giant air shower arrays can identify the nature of the highest energy cosmic rays as either gamma-rays or nuclei.Comment: 15 pages of RevTeX plus 6 postscript figures, tarred, gzipped and uuencoded. Subm. to Physical Review

    Asymptotic conditions of motion for radiating charged particles

    Get PDF
    Approximate asymptotic conditions on the motion of compact, electrically charged particles are derived within the framework of general relativity using the Einstein- Infeld-Hoffmann (EIH) surface integral method. While superficially similar to the Abraham-Lorentz and Lorentz-Dirac (ALD) equations of motion, these conditions differ from them in several fundamental ways. They are not equations of motion in the usual sense but rather a set of conditions which these motions must obey in the asymptotic future of an initial value surface. In addition to being asymptotic, these conditions of motion are approximate and apply, as do the original EIH equations, only to slowly moving systems. Also, they do not admit the run- away solutions of these other equations. As in the original EIH work, they are integrability conditions gotten from integrating the empty-space (i.e., source free) Einstein-Maxwell equations of general relativity over closed two-surfaces surrounding the sources of the fields governed by these equations. No additional ad hoc assumptions, such as the form of a force law or the introduction of inertial reaction terms, needed to derive the ALD equations are required for this purpose. Nor is there a need for any of the infinite mass renormalizations that are required in deriving these other equations.Comment: 15 page

    Synchrotron radiation in Myers-Pospelov effective electrodynamics

    Full text link
    In the framework of the classical effective Lorentz invariance violating (LIV) model of Myers-Pospelov, we present a complete calculation of the synchrotron radiation produced by a circularly moving charge in the rest frame of the model. Within the full far-field approximation we compute exact expressions for the electric and magnetic fields, the angular distribution of the power spectrum and the total emitted power in the m-th harmonic. We also perform an expansion of the latter quantity in terms of the electromagnetic LIV parameter and calculate the average degree of circular polarization to first order in such a parameter. In both cases we find, under adequate circumstances, the appearance of rather unexpected and large amplifying factors, which go together with the otherwise negligible naive expansion parameter. This opens up the possibility of selecting astrophysical sources where these amplifying factors are important, to explore further constraints imposed upon the LIV parameters by synchrotron radiation measurements.Comment: 9 page

    Differentiation of benign and malignant vertebral fractures using a convolutional neural network to extract CT-based texture features.

    Get PDF
    PURPOSE To assess the diagnostic performance of three-dimensional (3D) CT-based texture features (TFs) using a convolutional neural network (CNN)-based framework to differentiate benign (osteoporotic) and malignant vertebral fractures (VFs). METHODS A total of 409 patients who underwent routine thoracolumbar spine CT at two institutions were included. VFs were categorized as benign or malignant using either biopsy or imaging follow-up of at least three months as standard of reference. Automated detection, labelling, and segmentation of the vertebrae were performed using a CNN-based framework ( https://anduin.bonescreen.de ). Eight TFs were extracted: Varianceglobal, Skewnessglobal, energy, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP). Multivariate regression models adjusted for age and sex were used to compare TFs between benign and malignant VFs. RESULTS Skewnessglobal showed a significant difference between the two groups when analyzing fractured vertebrae from T1 to L6 (benign fracture group: 0.70 [0.64-0.76]; malignant fracture group: 0.59 [0.56-0.63]; and p = 0.017), suggesting a higher skewness in benign VFs compared to malignant VFs. CONCLUSION Three-dimensional CT-based global TF skewness assessed using a CNN-based framework showed significant difference between benign and malignant thoracolumbar VFs and may therefore contribute to the clinical diagnostic work-up of patients with VFs

    Corrections to flat-space particle dynamics arising from space granularity

    Full text link
    The construction of effective Hamiltonians describing corrections to flat space particle dynamics arising from the granularity of space at very short distances is discussed in the framework of an heuristic approach to the semiclassical limit of loop quantum gravity. After some general motivation of the subject, a brief non-specialist introduction to the basic tools employed in the loop approach is presented. The heuristical semiclassical limit is subsequently defined and the application to the case of photons and spin 1/2 fermions is described. The resulting modified Maxwell and Dirac Hamiltonians, leading in particular to Planck scale corrections in the energy-momentum relations, are presented. Alternative interpretations of the results and their limitations, together with other approaches are briefly discussed along the text. Three topics related to the above methods are reviewed: (1) The determination of bounds to the Lorentz violating parameters in the fermionic sector, obtained from clock comparison experiments.(2) The calculation of radiative corrections in preferred frames associated to space granularity in the framework of a Yukawa model for the interactions and (3) The calculation of synchrotron radiation in the framework of the Myers-Pospelov effective theories describing Lorentz invariance violations, as well as a generalized approach to radiation in Planck scale modified electrodynamics. The above exploratory results show that quantum gravity phenomenology provides observational guidance in the construction of quantum gravity theories and opens up the possibility of probing Planck scale physics.Comment: 49 pages, 6 figures and 4 tables. Extended version of the talk given at the 339-th WE-Heraeus-Seminar: Special Relativity, will it survive the next 100 years?, Potsdam, february 200
    corecore