6 research outputs found
Self-decorating cells via surface-initiated enzymatic controlled radical polymerization
Through the innovative use of surface-displayed horseradish peroxidase, this work explores the enzymatic catalysis of both bioRAFT polymerization and bioATRP to prompt polymer synthesis on the surface of Saccharomyces cerevisiae cells, with bioATRP outperforming bioRAFT polymerization. The resulting surface modification of living yeast cells with synthetic polymers allows for a significant change in yeast phenotype, including growth profile, aggregation characteristics, and conjugation of non-native enzymes to the clickable polymers on the cell surface, opening new avenues in bioorthogonal cell-surface engineering
Observation of ultrafast solid-density plasma dynamics using femtosecond X-ray pulses from a free-electron laser
The complex physics of the interaction between short pulse high intensity
lasers and solids is so far hardly accessible by experiments. As a result of
missing experimental capabilities to probe the complex electron dynamics and
competing instabilities, this impedes the development of compact laser-based
next generation secondary radiation sources, e.g. for tumor therapy
[Bulanov2002,ledingham2007], laboratory-astrophysics
[Remington1999,Bulanov2015], and fusion [Tabak2014]. At present, the
fundamental plasma dynamics that occur at the nanometer and femtosecond scales
during the laser-solid interaction can only be elucidated by simulations. Here
we show experimentally that small angle X-ray scattering of femtosecond X-ray
free-electron laser pulses facilitates new capabilities for direct in-situ
characterization of intense short-pulse laser plasma interaction at solid
density that allows simultaneous nanometer spatial and femtosecond temporal
resolution, directly verifying numerical simulations of the electron density
dynamics during the short pulse high intensity laser irradiation of a solid
density target. For laser-driven grating targets, we measure the solid density
plasma expansion and observe the generation of a transient grating structure in
front of the pre-inscribed grating, due to plasma expansion, which is an
hitherto unknown effect. We expect that our results will pave the way for novel
time-resolved studies, guiding the development of future laser-driven particle
and photon sources from solid targets
Recommended from our members
Observation of Ultrafast Solid-Density Plasma Dynamics Using Femtosecond X-Ray Pulses from a Free-Electron Laser
The complex physics of the interaction between short-pulse ultrahigh-intensity lasers and solids is so far difficult to access experimentally, and the development of compact laser-based next-generation secondary radiation sources, e.g., for tumor therapy, laboratory astrophysics, and fusion, is hindered by the lack of diagnostic capabilities to probe the complex electron dynamics and competing instabilities. At present, the fundamental plasma dynamics that occur at the nanometer and femtosecond scales during the laser-solid interaction can only be elucidated by simulations. Here we show experimentally that small-angle x-ray scattering of femtosecond x-ray free-electron laser pulses facilitates new capabilities for direct in situ characterization of intense short-pulse laser-plasma interactions at solid density that allows simultaneous nanometer spatial and femtosecond temporal resolution, directly verifying numerical simulations of the electron density dynamics during the short-pulse high-intensity laser irradiation of a solid density target. For laser-driven grating targets, we measure the solid density plasma expansion and observe the generation of a transient grating structure in front of the preinscribed grating, due to plasma expansion. The density maxima are interleaved, forming a double frequency grating in x-ray free-electron laser projection for a short time, which is a hitherto unknown effect. We expect that our results will pave the way for novel time-resolved studies, guiding the development of future laser-driven particle and photon sources from solid targets
Self-Decorating Cells Via Surface-Initiated Enzymatic Controlled Radical Polymerizations
Innovatively utilizing surface-displayed horseradish peroxidase, this paper explores the enzymatic catalysis of both bioRAFT polymerization and bioATRP to prompt polymer synthesis on the surface of Saccharomyces cerevisiae cells, with bioATRP outperforming bioRAFT polymerization. The resulting surface modification of living yeast cells with synthetic polymers allows for a significant alternation of yeast phenotype, including growth profile, aggregation characteristics, and conjugation of non-native enzymes to the clickable polymers on the cell surface, opening new avenues in bioorthogonal cell-surface engineering
Data for publication
Raw data, lineouts and fits for the publicatio