21 research outputs found

    A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development

    Get PDF
    BACKGROUND: Co-culture of embryos with various somatic cells has been suggested as a promising approach to improve embryo development. Despite numerous reports regarding the beneficial effects of epithelial cells from the female genital tract on embryo development in a co-culture system, little is known about the effect of these cells when being cultured under a polarized condition on embryo growth. Our study evaluated the effects of in vitro polarized cells on pre-embryo development. METHODS: Human endometrial tissue was obtained from uterine specimens excised at total hysterectomy performed for benign indications. Epithelial cells were promptly isolated and cultured either on extra-cellular matrix gel (ECM-Gel) coated millipore filter inserts (polarized) or plastic surfaces (non-polarized). The epithelial nature of the cells cultured on plastic was confirmed through immunohistochemistry, and polarization of cells cultured on ECM-Gel was evaluated by transmission electron microscopy (TEM). One or two-cell stage embryos of a superovulated NMRI mouse were then flushed and placed in culture with either polarized or non-polarized cells and medium alone. Development rates were determined for all embryos daily and statistically compared. At the end of the cultivation period, trophectoderm (TE) and inner cell mass (ICM) of expanded blastocysts from each group were examined microscopically. RESULTS: Endometrial epithelial cells cultured on ECM-Gel had a highly polarized columnar shape as opposed to the flattened shape of the cells cultured on a plastic surface. The two-cell embryos cultured on a polarized monolayer had a higher developmental rate than those from the non-polarized cells. There was no statistically significant difference; still, the blastocysts from the polarized monolayer, in comparison with the non-polarized group, had a significantly higher mean cell number. The development of one-cell embryos in the polarized and non-polarized groups showed no statistically significant difference. CONCLUSION: Polarized cells could improve in vitro embryo development from the two-cell stage more in terms of quality (increasing blastocyst cellularity) than in terms of developmental rate

    Neonatal androgenization affects the intrathymic T-cell maturation in rats

    No full text
    The thymus structure, expression of CD4/CD8/TCR alpha beta on thymocytes and thymocyte proliferative and apoptotic indexes were analyzed in sexually immature 30-day-old and in sexually mature 60-day-old female rats neonatally androgenized (NA) by subcutaneous injection of 500 mu g testosterone propionate/day on days 1-3 and in their vehicle-administered counterparts. The treatment affected normal thymus development. Thus, at 30 days of age, there was a reduction in the thymus weight, reflecting a decrease in the main thymic compartments. However, at 60 days of age, thymus weight did not significantly differ from that in age-matched controls, since the cortical volume enlargement was followed by a proportional decrease in the medullary volume. In rats of both ages, the changes in thymic compartments most likely reflected alterations in the size of both lymphoid and nonlymphoid components. Furthermore, in NA rats, substantial changes in thymocyte phenotypic characteristics were registered, in spite of their age. In both groups of NA rats, a decrease in the relative proportion of the least mature CD4-8-TCR alpha beta- cells and in that of CD4+8- TCR alpha beta-/TCR alpha beta(low) cells followed by an increase in the percentage of their successor CD4+8+TCR alpha beta-/TCR alpha beta(low) cells was detected. In addition, in 30-day-old NA rats, the relative proportions of CD4+8+TCR alpha beta(high) cells ( just positively selected) and that of mature single positive (CD4+8- and CD4-8+) and CD4-8- double negative TCR alpha beta(high) cells, were reduced, while in 60-day-old NA rats only the percentage of CD4+8+TCR alpha beta(high) thymocytes was decreased. Thus, the study showed that the changes in the development of the hypothalamo-pituitary-gonadal axis induced by neonatal androgenization may affect the thymus development and intrathymic T-cell maturation. Copyright (C) 2005 S. Karger AG, Basel
    corecore