10 research outputs found

    Three years of wastewater surveillance for new psychoactive substances from 16 countries

    Get PDF
    The proliferation of new psychoactive substances (NPS) over recent years has made their surveillance complex. The analysis of raw municipal influent wastewater can allow a broader insight into community consumption patterns of NPS. This study examines data from an international wastewater surveillance program that collected and analysed influent wastewater samples from up to 47 sites in 16 countries between 2019 and 2022. Influent wastewater samples were collected over the New Year period and analysed using validated liquid chromatography - mass spectrometry methods. Over the three years, a total of 18 NPS were found in at least one site. Synthetic cathinones were the most found class followed by phenethylamines and designer benzodiazepines. Furthermore, two ketamine analogues, one plant based NPS (mitragynine) and methiopropamine were also quantified across the three years. This work demonstrates that NPS are used across different continents and countries with the use of some more evident in particular regions. For example, mitragynine has highest mass loads in sites in the United States, while eutylone and 3-methylmethcathinone increased considerably in New Zealand and in several European countries, respectively. Moreover, 2F-deschloroketamine, an analogue of ketamine, has emerged more recently and could be quantified in several sites, including one in China, where it is considered as one of the drugs of most concern. Finally, some NPS were detected in specific regions during the initial sampling campaigns and spread to additional sites by the third campaign. Hence, wastewater surveillance can provide an insight into temporal and spatial trends of NPS use

    Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry

    No full text
    Aflatoxin M1(AFM1), a major metabolite of Aflatoxin B1(AFB1), has been identified as a potential contaminant in dairy products. Because of its possible carcinogenicity, the legislation limits as set by Commission Regulation (EC) No. 1881/2006 are very strict, namely 0.050 μg kg−1 in milk and 0.025 μg kg−1 in infant formulas. To meet these requirements, a sensitive and accurate method was developed, employing liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Ιmmunoaffinity columns (R-Biopharm) were used for sample purification and preconcentration of the analyte of interest. The quantification of AFM1 was conducted using fortified milk samples, while Aflatoxin B2 (AFB2) was used as an internal standard (IS). The method was validated in terms of linearity, precision, trueness, limits of detection and quantification and uncertainty. The performance criteria for the method were evaluated based on European Commission Regulation (EC) No. 401/2006 and its most recent amendment, as well as the suggested criteria for revision by the EU Reference Laboratory for Mycotoxins and Plant Toxins. The recovery was in the range of 77.9–81.0% for all fortification levels (0.025–0.050–0.075 μg kg−1), with RSDR values (Relative Standard Deviation of intermediate precision) ranging from 6.1% to 12%. The method’s detection and quantification limits were 0.0027 μg kg−1 and 0.0089 μg kg−1, respectively. The occurrence of AFM1 was investigated in 40 samples of different animal origin (cow, goat and sheep milk) provided by Greek producers

    Enhancing the Photocatalytic Activity of Immobilized TiO<sub>2</sub> Using Laser-Micropatterned Surfaces

    No full text
    In the past, the application of TiO2 slurry reactors has faced difficulties concerning the recovery and reusability of the catalyst. In response to these challenges, immobilized photocatalyst systems have been investigated, wherein the catalyst is fixed onto a solid support, frequently with reduced photocatalytic performance. In the present study, thin TiO2 films were developed in the anatase phase by the sol-gel process and spin-cast on laser-microstructured silicon substrates, to form photocatalytic surfaces of increased activity. The TiO2 films were thoroughly characterized using SEM-EDX, XRD, UV–Vis spectroscopy, and Raman spectroscopy. The photocatalytic activity of these surfaces was evaluated by the degradation of atrazine in aqueous solution under UV irradiation. Their photocatalytic activity was found to be significantly enhanced (mean kobs 24.1 × 10−3 min−1) when they are deposited on laser-microstructured silicon compared with flat silicon (mean kobs 4.9 × 10−3 min−1), approaching the photocatalytic activity of sol-gel TiO2 fortified with Degussa P25, used as a reference material (mean kobs 32.7 × 10−3 min−1). During the photocatalytic process, several transformation products (TPs) of atrazine, namely 2-chloro-4-(isopropylamino)-6-amino-s-triazine (CIAT), 2-chloro-4-amino-6-(ethylamino)-s-triazine (CAET), and 2-chloro-4.6-diamino-s-triazine (CAAT), were identified with LC–MS/MS. The stability of the photocatalytic surfaces was also investigated and remained unchanged through multiple cycles of usage. The surfaces were further tested with two other pollutants, i.e., 2,4,6-trichlorophenol and bisphenol-a, showing similar photocatalytic activity as with atrazine

    Three years of wastewater surveillance for new psychoactive substances from 16 countries

    Get PDF
    The proliferation of new psychoactive substances (NPS) over recent years has made their surveillance complex. The analysis of raw municipal influent wastewater can allow a broader insight into community consumption patterns of NPS. This study examines data from an international wastewater surveillance program that collected and analysed influent wastewater samples from up to 47 sites in 16 countries between 2019 and 2022. Influent wastewater samples were collected over the New Year period and analysed using validated liquid chromatog-raphy - mass spectrometry methods. Over the three years, a total of 18 NPS were found in at least one site. Synthetic cathinones were the most found class followed by phenethylamines and designer benzodiazepines. Furthermore, two ketamine analogues, one plant based NPS (mitragynine) and methiopropamine were also quantified across the three years. This work demonstrates that NPS are used across different continents and countries with the use of some more evident in particular regions. For example, mitragynine has highest mass loads in sites in the United States, while eutylone and 3-methylmethcathinone increased considerably in New Zealand and in several European countries, respectively. Moreover, 2F-deschloroketamine, an analogue of ke-tamine, has emerged more recently and could be quantified in several sites, including one in China, where it is considered as one of the drugs of most concern. Finally, some NPS were detected in specific regions during the initial sampling campaigns and spread to additional sites by the third campaign. Hence, wastewater surveillance can provide an insight into temporal and spatial trends of NPS use

    Determination of 56 per- and polyfluoroalkyl substances in top predators and their prey from Northern Europe by LC-MS/MS

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) are a group of emerging substances that have proved to be persistent and highly bioaccumulative. They are broadly used in various applications and are known for their long-distance migration and toxicity. In this study, 65 recent specimens of a terrestrial apex predator (Common buzzard), freshwater and marine apex predators (Eurasian otter, harbour porpoise, grey seal, harbour seal) and their potential prey (bream, roach, herring, eelpout) from northern Europe (United Kingdom, Germany, the Netherlands and Sweden) were analyzed for the presence of legacy and emerging PFAS, employing a highly sensitive liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method. 56 compounds from 14 classes were measured; 13 perfluoroalkyl carboxylic acids (PFCAs), 7 perfluoroalkyl sulphonic acids (PFSAs), 3 perfluorooctane sulfonamides (FOSAs), 4 perfluoroalkylphosphonic acids (PFAPAs), 3 perfluoroalkylphosphinic acids (PFPi's), 5 telomer alcohols (FTOHs), 2 mono-substituted polyfluorinated phosphate esters (PAPs), 2 di-substituted polyfluorinated phosphate esters (diPAPs), 6 saturated fluorotelomer acids (FTAS), 3 unsaturated fluorotelomer acids (FTUAs), 2 N-Alkyl perfluorooctane sulfonamidoethanols (FOSEs), 3 fluorotelomer sulphonic acids (FTSAs), 2 perfluoroether carboxylic acids (PFECAs) and 1 chlorinated perfluoroether sulphonic acid (Cl-PFESA). All samples were lyophilized before analysis, in order to enhance extraction efficiency, improve the precision and achieve lower detection limits. The analytes were extracted from the dry matrices through generic methods of extraction, using an accelerated solvent extraction (ASE), followed by clean-up through solid phase extraction (SPE). Method detection limits and method quantification limits ranged from 0.02 to 1.25 ng/g wet weight (ww) and from 0.05 to 3.79 ng/g (ww), respectively. Recovery ranged from 40 to 137%. Method precision ranged from 3 to 20 %RSD. The sum of PFAS concentration in apex predators livers ranged from 0.2 to 20.2 μg/g (ww), whereas in the fish species muscle tissues it ranged from 16 to 325 ng/g (ww). All analyzed specimens were primarily contaminated with PFOS, while the three PFPi's included in this study exhibited frequency of appearance (FoA) 100 %. C9 to C13 PFCAs were found at high concentrations in apex predator livers, while the overall PFAS levels in fish fillets also exceeded ecotoxicological thresholds. The findings of our study show a clear association between the PFAS concentrations in apex predators and the geographical origin of the specimens, with samples that were collected in urban and agricultural zones being highly contaminated compared to samples from pristine or semi-pristine areas. The high variety of PFAS and the different PFAS composition in the apex predators and their prey (AP&P) samples is alarming and strengthens the importance of PFAS monitoring across the food chain

    Assessment of contaminants of emerging concern in European apex predators and their prey by LC-QToF MS wide-scope target analysis

    No full text
    Apex predators are good indicators of environmental pollution since they are relatively long-lived and their high trophic position and spatiotemporal exposure to chemicals provides insights into the persistent, bioaccumulative and toxic (PBT) properties of chemicals. Although monitoring data from apex predators can considerably support chemicals’ management, there is a lack of pan-European studies, and longer-term monitoring of chemicals in organisms from higher trophic levels. The present study investigated the occurrence of contaminants of emerging concern (CECs) in 67 freshwater, marine and terrestrial apex predators and in freshwater and marine prey, gathered from four European countries. Generic sample preparation protocols for the extraction of CECs with a broad range of physicochemical properties and the purification of the extracts were used. The analysis was performed utilizing liquid (LC) chromatography coupled to high resolution mass spectrometry (HRMS), while the acquired chromatograms were screened for the presence of more than 2,200 CECs through wide-scope target analysis. In total, 145 CECs were determined in the apex predator and their prey samples belonging in different categories, such as pharmaceuticals, plant protection products, per- and polyfluoroalkyl substances, their metabolites and transformation products. Higher concentration levels were measured in predators compared to prey, suggesting that biomagnification of chemicals through the food chain occurs. The compounds were prioritized for further regulatory risk assessment based on their frequency of detection and their concentration levels. The majority of the prioritized CECs were lipophilic, although the presence of more polar contaminants should not be neglected. This indicates that holistic analytical approaches are required to fully characterize the chemical universe of biota samples. Therefore, the present survey is an attempt to systematically investigate the presence of thousands of chemicals at a European level, aiming to use these data for better chemicals management and contribute to EU Zero Pollution Ambition

    Assessment of contaminants of emerging concern in European apex predators and their prey by LC-QToF MS wide-scope target analysis

    Get PDF
    Apex predators are good indicators of environmental pollution since they are relatively long-lived and their high trophic position and spatiotemporal exposure to chemicals provides insights into the persistent, bioaccumulative and toxic (PBT) properties of chemicals. Although monitoring data from apex predators can considerably support chemicals’ management, there is a lack of pan-European studies, and longer-term monitoring of chemicals in organisms from higher trophic levels. The present study investigated the occurrence of contaminants of emerging concern (CECs) in 67 freshwater, marine and terrestrial apex predators and in freshwater and marine prey, gathered from four European countries. Generic sample preparation protocols for the extraction of CECs with a broad range of physicochemical properties and the purification of the extracts were used. The analysis was performed utilizing liquid (LC) chromatography coupled to high resolution mass spectrometry (HRMS), while the acquired chromatograms were screened for the presence of more than 2,200 CECs through wide-scope target analysis. In total, 145 CECs were determined in the apex predator and their prey samples belonging in different categories, such as pharmaceuticals, plant protection products, per- and polyfluoroalkyl substances, their metabolites and transformation products. Higher concentration levels were measured in predators compared to prey, suggesting that biomagnification of chemicals through the food chain occurs. The compounds were prioritized for further regulatory risk assessment based on their frequency of detection and their concentration levels. The majority of the prioritized CECs were lipophilic, although the presence of more polar contaminants should not be neglected. This indicates that holistic analytical approaches are required to fully characterize the chemical universe of biota samples. Therefore, the present survey is an attempt to systematically investigate the presence of thousands of chemicals at a European level, aiming to use these data for better chemicals management and contribute to EU Zero Pollution Ambition

    Network analysis to reveal the most commonly detected compounds in predator-prey pairs in freshwater and marine mammals and fish in Europe

    No full text
    Marine and freshwater mammalian predators and fish samples, retrieved from environmental specimen banks (ESBs), natural history museum (NHMs) and other scientific collections, were analysed by LIFE APEX partners for a wide range of legacy and emerging contaminants (2545 in total). Network analysis was used to visualize the chemical occurrence data and reveal the predominant chemical mixtures for the freshwater and marine environments. For this purpose, a web tool was created to explore these chemical mixtures in predator-prey pairs. Predominant chemicals, defined as the most prevalent substances detected in prey-predator pairs were identified through this innovative approach. The analysis established the most frequently co-occurring substances in chemical mixtures from AP&P in the marine and freshwater environments. Freshwater and marine environments shared 23 chemicals among their top 25 predominant chemicals. Legacy chemical, including perfluorooctanesulfonic acid (PFOS), brominated diphenyl ethers (BDEs), polychlorinated biphenyls (PCBs), hexachlorobenzene and mercury were dominant chemicals in both environments. Furthermore, N-acetylaminoantipyrine was a predominant pharmaceutical in both environments. The LIFE APEX chemical mixture application (https://norman-data.eu/LIFE_APEX_Mixtures) was proven to be useful to establish most prevalent compounds in terms of number of detected counts in prey-predator pairs. Nonetheless, further research is needed to establish food chain associations of the predominant chemicals
    corecore