3 research outputs found

    Toll-Like Receptor-4 Antagonist Enhances the Repair of Ultraviolet Radiation-Induced DNA Damage and Augments Anti-Tumor Immune Responses in Mice

    No full text
    Ultraviolet (UV) irradiation of the skin is related to the development of skin cancer. UVB also causes DNA damage in the form of cyclobutane pyrimidine dimers (CPDs), which can result in stable mutations. Toll-like receptor 4 (TLR4), a component of innate immunity, plays a key role in cancer. Previous studies from our laboratory have observed that TLR4 deficiency resulted in the repair of UVB-induced DNA damage, inhibition of UVB-induced immune suppression, and carcinogenesis. In this study, we determined the efficacy of TLR4 antagonist TAK-242 in regulation of UVB-induced DNA damage, inflammation, and tumor development. Our results indicate that TAK-242 treatment increased the expression of xeroderma pigmentosum group A (XPA) mRNA, resulting in the repair of UVB-induced CPDs in skin of SKH-1 mice. Treatment with TAK-242 also inhibited the activation of NLR family pyrin domain containing 3 (NLRP3) in UVB-exposed skin of SKH-1 mice. Cutaneous carcinogenesis was significantly reduced in mice treated with TAK-242 in comparison to vehicle-treated mice. The proinflammatory cytokines IL-1β, IL-6, and TNF-α were also found to be significantly greater in vehicle-treated mice than TAK-242-treated mice. Finally, treatment with TAK-242 augmented anti-tumor immune responses in mice. Our data provide further evidence that activation of the TLR4 pathway promotes the development of UV-induced non-melanoma skin cancer mediated at least in part on its negative effects on DNA damage. Moreover, treatment with the TLR4 inhibitor TAK-242 may be effective for prevention of skin cancer

    Paralytic And Nonparalytic Muscle Adaptations To Exercise Training Versus High-Protein Diet In Individuals With Long-Standing Spinal Cord Injury

    No full text
    This study compares the effects of an 8-wk isocaloric high-protein (HP) diet versus a combination exercise (Comb-Ex) regimen on paralytic vastus lateralis (VL) and nonparalytic deltoid muscle in individuals with long-standing spinal cord injury (SCI). Fiber-type distribution, cross-sectional area (CSA). levels of translation initiation signaling proteins (Erk-1/2, Akt, p70S6K1, 4EBP1, RPS6, and FAK), and lean thigh mass were analyzed at baseline and after the 8-wk interventions. A total of 11 participants (C5-T12 levels, 21.8 +/- 6.3 yr postinjury; 6 Comb-Ex and 5 HP diet) completed the study. Comb-Ex training occurred 3 days/wk and consisted of upper body resistance training (RT) in addition to neuromuscular electrical stimulation (NMES)-induced-RT for paralytic VL muscle. Strength training was combined with high-intensity arm-cranking exercises (1-min intervals at 85-90%, (V) over dotO(2peak)) for improving cardiovascular endurance. For the HP diet intervention, protein and fat each comprised 30%. and carbohydrate comprised 40% of total energy. Clinical tests and muscle biopsies were performed 24 h before and after the last exercise or diet session. The Comb-Ex intervention increased Type IIa myofiber distribution and CSA in VL muscle and Type I and IIa myofiber CSA in deltoid muscle. In addition, Comb-Ex increased lean thigh mass, (V) over dotO(2peak), and upper body strength (P < 0.05). These results suggest that exercise training is required to promote favorable changes in paralytic and nonparalytic muscles in individuals with long-standing SCI, and adequate dietary protein consumption alone may not be sufficient to ameliorate debilitating effects of paralysis. NEW & NOTEWORTHY This study is the first to directly compare the effects of an isocaloric high-protein diet and combination exercise training on clinical and molecular changes in paralytic and nonparalytic muscles of individuals with long-standing spinal cord injury. Our results demonstrated that muscle growth and fiber-type alterations can best be achieved when the paralyzed muscle is sufficiently loaded via neuromuscular electrical stimulation-induced resistance training.Wo
    corecore