10 research outputs found

    Cannabis use in patients with early psychosis is associated with alterations in putamen and thalamic shape

    Get PDF
    Around half of patients with early psychosis have a history of cannabis use. We aimed to determine if there are neurobiological differences in these the subgroups of persons with psychosis with and without a history of cannabis use. We expected to see regional deflations in hippocampus as a neurotoxic effect and regional inflations in striatal regions implicated in addictive processes. Volumetric, T1w MRIs were acquired from people with a diagnosis psychosis with (PwP + C = 28) or without (PwP − C = 26) a history of cannabis use; and Controls with (C + C = 16) or without (C − C = 22) cannabis use. We undertook vertex‐based shape analysis of the brainstem, amygdala, hippocampus, globus pallidus, nucleus accumbens, caudate, putamen, thalamus using FSL FIRST. Clusters were defined through Threshold Free Cluster Enhancement and Family Wise Error was set at p < .05. We adjusted analyses for age, sex, tobacco and alcohol use. The putamen (bilaterally) and the right thalamus showed regional enlargement in PwP + C versus PwP − C. There were no areas of regional deflation. There were no significant differences between C + C and C − C. Cannabis use in participants with psychosis is associated with morphological alterations in subcortical structures. Putamen and thalamic enlargement may be related to compulsivity in patients with a history of cannabis use

    Association of cannabis with glutamatergic levels in patients with early psychosis: Evidence for altered volume striatal glutamate relationships in patients with a history of cannabis use in early psychosis

    Get PDF
    The associative striatum, an established substrate in psychosis, receives widespread glutamatergic projections. We sought to see if glutamatergic indices are altered between early psychosis patients with and without a history of cannabis use and characterise the relationship to grey matter. 92 participants were scanned: Early Psychosis with a history of cannabis use (EPC\u2009=\u200929); Early Psychosis with minimal cannabis use (EPMC\u2009=\u200925); Controls with a history of cannabis use (HCC\u2009=\u200916) and Controls with minimal use (HCMC\u2009=\u200922). Whole brain T1 weighted MR images and localised proton MR spectra were acquired from head of caudate, anterior cingulate and hippocampus. We examined relationships in regions with known high cannabinoid 1 receptor (CB1R) expression (grey matter, cortex, hippocampus, amygdala) and low expression (white matter, ventricles, brainstem) to caudate Glutamine+Glutamate (Glx). Patients were well matched in symptoms, function and medication. There was no significant group difference in Glx in any region. In EPC grey matter volume explained 31.9% of the variance of caudate Glx (p\u2009=\u20090.003) and amygdala volume explained 36.9% (p\u2009=\u20090.001) of caudate Glx. There was no significant relationship in EPMC. The EPC vs EPMC interaction was significant (p\u2009=\u20090.042). There was no such relationship in control regions. These results are the first to demonstrate association of grey matter volume and striatal glutamate in the EPC group. This may suggest a history of cannabis use leads to a conformational change in distal CB1 rich grey matter regions to influence striatal glutamatergic levels or that such connectivity predisposes to heavy cannabis use

    Association of cannabis with glutamatergic levels in patients with early psychosis: Evidence for altered volume striatal glutamate relationships in patients with a history of cannabis use in early psychosis

    Get PDF
    he associative striatum, an established substrate in psychosis, receives widespread glutamatergic projections. We sought to see if glutamatergic indices are altered between early psychosis patients with and without a history of cannabis use and characterise the relationship to grey matter. 92 participants were scanned: Early Psychosis with a history of cannabis use (EPC = 29); Early Psychosis with minimal cannabis use (EPMC = 25); Controls with a history of cannabis use (HCC = 16) and Controls with minimal use (HCMC = 22). Whole brain T1 weighted MR images and localised proton MR spectra were acquired from head of caudate, anterior cingulate and hippocampus. We examined relationships in regions with known high cannabinoid 1 receptor (CB1R) expression (grey matter, cortex, hippocampus, amygdala) and low expression (white matter, ventricles, brainstem) to caudate Glutamine+Glutamate (Glx). Patients were well matched in symptoms, function and medication. There was no significant group difference in Glx in any region. In EPC grey matter volume explained 31.9% of the variance of caudate Glx (p = 0.003) and amygdala volume explained 36.9% (p = 0.001) of caudate Glx. There was no significant relationship in EPMC. The EPC vs EPMC interaction was significant (p = 0.042). There was no such relationship in control regions. These results are the first to demonstrate association of grey matter volume and striatal glutamate in the EPC group. This may suggest a history of cannabis use leads to a conformational change in distal CB1 rich grey matter regions to influence striatal glutamatergic levels or that such connectivity predisposes to heavy cannabis use

    The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis

    No full text
    Objective: To investigate if repetitive transcranial magnetic stimulation (rTMS) was as effective as electroconvulsive therapy (ECT) in treating major depressive episodes and to perform a cost-effectiveness analysis. Design: A single-blind pragmatic multicentre randomised controlled trial (RCT) with 6 months of follow-up to test equivalence of rTMS with ECT Setting: The South London and Maudsley NHS Trust and Pembury Hospital in the Invicta Mental Health Trust in Kent. Participants: Right-handed adult patients referred for ECT for treatment of a major depressive episode (DSM-IV) were assessed. During the 2.5-year trial period, 260 patients were referred for ECT, of whom 46 entered the trial. The main reason for not entering the trial was not consenting to ECT while being formally treated under the UK Mental Health Act 1983. Interventions: Patients were randomised to receive a 15-day course of rTMS of the left dorsolateral prefrontal cortex (n = 24) or a course of ECT (n = 22). Main outcome measures: Patients were assessed before randomisation, at end of treatment and at the 6-month follow-up. Primary outcome measures were the 17-item Hamilton Rating Scale for Depression (HRSD) and proportion of remitters (defined as HRSD score ≤8) at the end-of-treatment time point. Secondary outcomes included self-ratings for mood on the Beck Depression inventory-II (BDI-II) and visual analogue mood scales (VAMS), the Brief Psychiatric Rating Scale (BPRS), plus subjective and objective side-effects. Low scores on the BDI-II, VAMS and BPRS are positive in terms of health. The results were analysed on an intention-to-treat basis. Cost data were collected using the Client Service Receipt Inventory and the Short Form with 36 Items was used to obtain quality of life measures. Health economic outcomes were cost of treatments, costs incurred during the 6-month follow-up period and gains in quality-adjusted life-years (QALYs). Results: One patient was lost to follow-up at end of treatment and another eight at 6 months. The end-of-treatment HRSD scores were lower for ECT, with 13 (59%) achieving remission compared with four (17%) in the rTMS group. However, HRSD scores did not differ between groups at 6 months. BDI-II, VAMS and BPRS scores were lower for ECT at end of treatment and remained lower after 6 months. Improvement in subjective reports of side-effects following ECT correlated with antidepressant response. There was no difference between the two groups before or after treatment on global measures of cognition. Athough individual treatment session costs were lower for rTMS than ECT, the cost for a course of rTMS was not significantly different from that for a course of ECT as more rTMS sessions were given per course. Service costs were not different between the groups in the subsequent 6 months but informal care costs were significantly higher for the rTMS group and contributed substantially to the total cost for this group during the 6-month follow-up period. There also was no difference in gain in QALYs for ECT and rTMS patients. Analysis of cost-effectiveness acceptability curves demonstrated that rTMS has very low probability of being more cost-effective than ECT. Conclusions: ECT is a more effective and potentially cost-effective antidepressant treatment than 3 weeks of rTMS as administered in this study. Optimal treatment parameters for rTMS need to be established for treating depression. More research is required to refine further the administration of ECT in order to reduce associated cognitive side-effects while maintaining its effectiveness. There is a need for large-scale, adequately powered RCTs comparing different forms of ECT. The next generation of randomised trials of rTMS should also seek to compare treatment variables such as stimulus intensity, number of stimuli administered and duration of treatment, with a view to quantifying an effect size for antidepressant action. © Queen's Printer and Controller of HMSO 2007. All rights reserved

    A randomized, controlled trial with 6-month follow-up of repetitive transcranial magnetic stimulation and electroconvulsive therapy for severe depression

    No full text
    Objective: Repetitive transcranial magnetic stimulation (rTMS) has been reported to be as effective as electroconvulsive therapy (ECT) for major depression. The authors conducted a multicenter randomized, controlled trial to test the equivalence of rTMS with ECT. Method: Forty-six patients with major depression referred for ECT were randomly assigned to either a 15-day course of rTMS of the left dorsolateral prefrontal cortex (N=24) or a standard course of ECT (N=22). The primary outcome measures were the score on the 17-item Hamilton Depression Rating Scale (HAM-D) and the proportion of patients with remissions (Hamilton score, ≤8) at the end of treatment. Secondary outcomes included mood self-ratings on the Beck Depression Inventory-II and visual analogue mood scales, Brief Psychiatric Rating Scale (BPRS) score, and both self-reported and observer-rated cognitive changes. The patients were followed up after 6 months. Results: HAM-D scores at the end of treatment were significantly lower for ECT, with 13 patients (59.1%) achieving remission in the ECT group and four (16.7%) in the rTMS group. However, at 6 months the HAM-D scores did not differ between groups. Beck scale, visual analogue mood scale, and BPRS scores were lower for ECT at the end of treatment and remained lower after 6 months. Self- and observer-rated cognitive measures were similar in the two groups. Conclusions: rTMS was not as effective as ECT, and ECT was substantially more effective for the short-term treatment of depression

    Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar i disorder (BALANCE): A randomised open-label trial

    No full text
    corecore