30 research outputs found

    Physicochemical treatment of office and public buildings greywater

    Get PDF
    The current study analyses the performance of deep sand filtration of greywater from an office building and the performance of a combined physicochemical process comprising of coagulation, sedimentation and filtration. Raw greywater quality exhibited very high variability with average turbidity of 35 NTU, and TSS, COD t , and BOD of 45, 240, 75 mg/l respectively. The stand-alone filter removed 50 and 70% of the turbidity and TSS, but failed to remove COD and BOD. Quality of the produced effluent was too low to allow any reuse. Clogging rate of the filter was high and under hydraulic loading of 3 -4 m 3 /(m 2 h) the filtration cycle had to be terminated after 5-8 h. Clogging occurred mainly on the upper layer, indicating the dominance of "cake" filtration mechanism. Addition of coagulation and sedimentation prior to sedimentation dramatically improved effluent quality, reaching overall removal efficiencies of 92, 94, 65 and 57% of turbidity, TSS COD t and BOD respectively. The filtration cycle could be prolonged to 20 h. The effluent produced was of much better quality, yet, it has to be further treated (either biological treatment or membrane filtration). Most of the removal occurred in the coagulation-sedimentation step, while the filter acted as a polishing unit

    Academics perception towards various water reuse options: University of Trás-os-Montes e Alto Douro - UTAD Campus (Portugal) as a case study

    Get PDF
    Any strategy of water reuse has to achieve social acceptance to be successful. This paper presents the results of a multiple choice survey that attempted to establish the general attitude toward water reuse by asking academics in UTAD (Portugal) a wide range of questions. The survey included 20 reuse options, which were clustered into three reuse categories, specifically: low, medium and high contact levels. Correlation analysis between the level of support of low, medium and high contact options and demographic characteristics, personal and environmental beliefs was performed. Results show that a high proportion of the participants supported low and medium contact reuse options. Correlation was found to exist between the income classes and to the level of support of medium and high reuse options and between education level and the support for high contact reuse options. The responses to the survey suggested that some beliefs influence the level of support

    Quality of Roof-Harvested Rainwater as a Function of Environmental and Air Pollution Factors in a Coastal Mediterranean City (Haifa, Israel)

    No full text
    The quality of roof-harvested rainwater in a Mediterranean climate, which is characterised by dry summers and erratic wet winters, was studied. The effects of environmental factors (rain depth, length of dry period between consecutive rain events, time since the beginning of the rainy season, roof type, wind speed, and wind direction) and air pollution parameters (O3, SO2, NO2, NO, PM2.5, and PM2.5–10) on roof runoff quality were studied. Three roofs of three common types (concrete, steel sheets, and tiles) were constructed. Roof-generated runoff was collected over two rainy seasons (>50 rain events) and were analysed for presence of metals, chemical and physical constituents, and faecal coliforms (a total of 23 parameters). Rain depth and runoff volume from each roof were recorded for each rain event. Most parameters examined complied with the Israeli potable water regulations. A stepwise multivariate linear regression established a significant effect of roof type on runoff pollutant concentrations, especially for ones generated by the roof material itself (e.g., Ca from the concrete roof and Zn from roof tiles). A significant effect of various air pollutants on the quality of roof-runoff water was found, as explained by rain washing off pollutants that accumulated in the atmosphere during the antecedent dry period. Both O3 and PM2.5–10 affected 17 quality parameters each. Rain depth affected only four out of the 23 water quality variables. In contrast, the length of the dry period between consecutive rain events was an important factor, affecting 12 roof-runoff quality variables

    Optimizing the Control of Decentralized Rainwater Harvesting Systems for Reducing Urban Drainage Flows

    No full text
    The practice of rainwater harvesting (RWH) has been studied extensively in recent years, as it has the potential to alleviate some of the increasing stress on urban water distribution systems and drainage networks. Within the field, an approach of real-time control of rainwater storage is emerging as a method to improve the ability of RWH systems to reduce runoff and urban drainage flows. As applying real-time control on RWH tanks means releasing water that could be used for supply, applying controlled-release policies often hinders the RWH system’s ability to supply water. The suggested study presents an approach that has the potential to improve the capability of a distributed network of RWH systems to mitigate peak drainage flows while substantially reducing the impact on harvested rainwater availability. The suggested method uses a genetic algorithm to generate release policies, which are tailored for any given rain event and initial conditions. The algorithm utilizes the modeled drainage system’s response to a given rainfall pattern and manages to substantially reduce peak drainage flows with little impact on available rainwater when compared to the conventional no-release alternative and other active release methods

    Quality control of wastewater treatment: A new approach

    No full text
    This paper presents a new approach to quality control of wastewater treatment. The first part formulates basic principles of statistical process control (SPC) and Taguchi Method. Then it is shown that the classical SPC technique used in industry, cannot be to applied to wastewater treatment plants without adaptation and that the Taguchi Method is inapplicable in this case. This is followed by an example from literature, which demonstrates the problems of applying the SPC method to wastewater treatment. The third part of the paper presents a case study where the performance of a greywater treatment plant is examined. The performance is analyzed by means of cross-correlation between input and output parameters. A new approach to SPC of wastewater treatment, either "Dynamic SPC" or "linear regression SPC", is presented, and a permeability coefficient is developed (the ratio of the output and input energies). Both are proposed as monitoring tools for wastewater treatment systems.

    Quantitative Microbial Risk Analysis for Various Bacterial Exposure Scenarios Involving Greywater Reuse for Irrigation

    No full text
    Greywater reuse can significantly reduce domestic water consumption. While the benefits are promising, risks are still under debate. Using a quantitative microbial risk-assessment model, we assessed the health risks associated with greywater reuse. The pathogens Salmonella enterica, Shigella spp., and Staphylococcus aureus were evaluated due to their possible prevalence in greywater and limited information regarding their potential risk with relation to greywater reuse for irrigation. Various exposure scenarios were investigated. Monte Carlo simulation was used and results were compared to the maximum “acceptable” limit of 10−6 disability-adjusted life years (DALY) set by the World Health Organization. Safe reuse was met for all worst-case exposure scenarios for Staphylococcus aureus, Salmonella enterica and Shigella spp. If their concentrations were kept below 10,000, 50 and 5 cfu/100 mL, respectively. For the best-practice (more realistic) scenarios, safe reuse was met for Staphylococcus aureus if its concentration was kept below 106 cfu/100 mL. Salmonella enterica met the safe reuse requirements if a maximum concentration of 500 cfu/100 mL was maintained and Shigella spp. if a maximum concentration was lower than 5 cfu/100 mL. Based on reported concentrations of these bacteria in greywater, proper treatment and disinfection are recommended

    Framework, Procedure, and Tools for Comprehensive Evaluation of Sustainable Stormwater Management: A Review

    No full text
    To better evaluate and enhance the performance and benefit of sustainable stormwater management (SSWM) in developing countries, this study proposes a comprehensive evaluation framework based on thorough literature review. This framework re-classifies evaluation goals and indicators into four aspects—stormwater system, integrated management, social engagement, and urban development. The purpose of this review is to provide a guideline for decision makers to choose appropriate goals and indicators according to different regional context. Meanwhile, a structured procedure for comprehensive evaluation of SSWM is proposed to guide a well-organised decision-making process. Furthermore, pros and cons of eight decision support tools, as well as their functional focus, are compared, aiming to provide references for SSWM in developing countries. Outcomes presented in this review are expected to support decision makers in the process of screening optimal SSWM strategies and monitoring SSWM projects

    Legionella spp. isolation and quantification from greywater

    No full text
    Legionella, an opportunistic human pathogen whose natural environment is water, is transmitted to humans through inhalation of contaminated aerosols. Legionella has been isolated from a high diversity of water types. Due its importance as a pathogen, two ISO protocols have been developed for its monitoring. However, these two protocols are not suitable for analyzing Legionella in greywater (GW). GW is domestic wastewater excluding the inputs from toilets and kitchen. It can serve as an alternative water source, mainly for toilet flushing and garden irrigation; both producing aerosols that can cause a risk for Legionella infection. Hence, before reuse, GW has to be treated and its quality needs to be monitored. The difficulty of Legionella isolation from GW strives in the very high load of contaminant bacteria. Here we describe a modification of the ISO protocol 11731:1998 that enables the isolation and quantification of Legionella from GW samples. The following modifications were made:• To enable isolation of Legionella from greywater, a pre-filtration step that removes coarse matter is recommended. • Legionella can be isolated after a combined acid-thermic treatment that eliminates the high load of contaminant bacteria in the sample

    H2S Removal from Groundwater by Chemical Free Advanced Oxidation Process Using UV-C/VUV Radiation

    No full text
    Sulfide species may be present in groundwater due to natural processes or due to anthropogenic activity. H2S contamination poses odor nuisance and may also lead to adverse health effects. Advanced oxidation processes (AOPs) are considered promising treatments for hydrogen-sulfide removal from water, but conventional AOPs usually require continuous chemical dosing, as well as post-treatment, when solid catalysts are applied. Vacuum-UV (VUV) radiation can generate ·OH in situ via water photolysis, initiating chemical-free AOP. The present study investigated the applicability of VUV-based AOP for removal of H2S both in synthetic solutions and in real groundwater, comparing combined UV-C/VUV and UV-C only radiation in a continuous-flow reactor. In deionized water, H2S degradation was much faster under the combined radiation, dominated by indirect photolysis, and indicated the formation of sulfite intermediates that convert to sulfate at high radiation doses. Sulfide was efficiently removed from natural groundwater by the two examined lamps, with no clear preference between them. However, in anoxic conditions, common in sulfide-containing groundwater, a small advantage for the combined lamp was observed. These results demonstrate the potential of utilizing VUV-based AOP for treating H2S contamination in groundwater as a chemical-free treatment, which can be especially attractive to remote small treatment facilities

    Diurnal patterns of micropollutants concentrations in domestic greywater

    No full text
    <p>In recent years, much interest has been given to presence of micropollutants in municipal wastewater, some of which are suspected to be endocrine disruptors, toxic or carcinogenic. Much less attention has been paid to their presence in greywater. The present research studies the diurnal patterns of micropollutants in greywater and computes their daily loads. Monitoring was carried-out using auto-controlled sampling system, designed to overcome the erratic greywater generation. Two main generation periods were identified: morning (5:00–11:00) and evening-night (18:00–2:00), contributing about 20% and >50% of daily greywater discharge, respectively. Average specific daily greywater discharge was 57 L p<sup>−1</sup>d<sup>−1</sup>, which matches reported value for greywater generated by showers and washbasins in Israel. The most frequently detected micropollutants in this study were methylparben (preservative), galaxolide (fragrance) and oxybenzone (UV-filter), which are common ingredients in many personal care-products. Their daily loads were 2, 840, 1, 887 and 728 µg p<sup>−1</sup>d<sup>−1</sup>, respectively.</p
    corecore