494 research outputs found

    E 0336-248 : A New BL Lac Object Found by an Old Einstein

    Get PDF
    We obtained new ROSAT HRI and optical observations in the field of the Einstein X-ray source E 0336-248, which we use to identify it as a 19th magnitude BL Lacertae object at z=0.251 with an X-ray luminosity of 10^45 erg/s. It is also a 14 mJy radio source at 20 cm. An emission-line galaxy at z=0.043 that was previously considered a Seyfert identification for E 0336-248 is shown instead to be an unrelated, non-active H II region galaxy that lies 78 arcseconds from the X-ray source. The resolution of this historical case of mistaken identity illustrates that discoveries of non-AGN emission-line galaxies with high X-ray luminosity should be tested carefully. The properties of E 0336-248 are similar to those of other X-ray selected BL Lacs, including its location in an apparent group or cluster of galaxies. Somewhat unusual is the weak contribution of nonstellar optical light relative to the starlight in the spectrum of its host galaxy, which raises once again the possibility that even high-luminosity BL Lac objects may be difficult to identify in X-ray selected samples. We discuss a possible manifestation of this problem that appeared in the recent literature.Comment: To appear in the Astronomical Journal. 8 pages including figures (uses psfig.tex, also included

    Chandra detection of a parsec scale wind in the Broad Line Radio Galaxy 3C 382

    Get PDF
    We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN, with RL=log10(f5GHz/f4400)>1R_{\rm L} = \log_{10}(f_{\rm 5GHz}/f_{4400})>1, whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840\pm60 km/s and are resolved by Chandra with a velocity width of 340\pm70 km/s. The outflow appears to originate from a single zone of gas of column density NH=1.3×1021N_{\rm H} = 1.3 \times 10^{21} cm2^{-2} and ionization parameter logξ=2.45\log \xi = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region.Comment: 11 pages, accepted for publication in Astrophysical Journal Letter

    A deep look at the inner regions of the mini-BAL QSO PG 1126-041 with XMM-Newton

    Full text link
    A long XMM-Newton observation of the mini-BAL QSO PG 1126-041 allowed us to detect a highly ionized phase of X-ray absorbing gas outflowing at v~15000 km/s. Physical implications are briefly discussed.Comment: 2 pages, 2 figures. Proceedings of "X.ray Astronomy 2009", Bologna 09/7-11/2009, AIP Conference Series, Eds. A. Comastri, M. Cappi, L. Angelin

    The Wide-Angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554

    Get PDF
    We present results from X-ray observations of the gravitationally lensed z = 1.51 AGN HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ~1-12 keV at > 99% confidence. The inferred velocities of the outflowing components range between ~0.1c and ~0.4c. A strong emission line at ~6.8 keV accompanied by a significant absorption line at ~7.8 keV is also detected in the Chandra observation. The presence of these lines is a characteristic feature of a P-Cygni profile supporting the presence of an expanding outflowing highly ionized iron absorber in this quasar. Modeling of the P-Cygni profile constrains the covering factor of the wind to be > 0.6, assuming disk shielding. A disk-reflection component is detected in the XMM-Newton observation accompanied by blueshifted absorption lines. The XMM-Newton observation constrains the inclination angle to be < 45 degrees at 90% confidence, assuming the hard excess is due to blurred reflection from the accretion disk. The detection of an ultrafast and wide-angle wind in an AGN with intrinsic narrow absorption lines (NALs) would suggest that quasar winds may couple efficiently with the intergalactic medium and provide significant feedback if ubiquitous in all NAL and BAL quasars. We estimate the mass-outflow rate of the absorbers to lie in the range of 1.5 and 3.4 Msolar/yr for the two observations. We find the fraction of kinetic to electromagnetic luminosity released by HS 0810+2554 is large (epsilon = 9 (-6,+8)) suggesting that magnetic driving is likely a significant contributor to the acceleration of this outflow.Comment: 27 pages, 13 figures, Accepted for publication in Ap
    corecore