11 research outputs found

    Electrostatic and Magnetic Imaging Without Image Rotation

    Get PDF
    A method is discussed for designing electrostatic and magnetic imaging systems without image rotation. Tsukkerman\u27s condition for an imaging system free of rotation does not appear to be applicable to practical designs. We have modified his theory to obtain two other conditions for the normalized axial electric potential V(z), the normalized axial magnetic induction G(z), and a lens strength parameter which can be interpreted as an eigen-value. Some analytical examples and numerical results are given

    Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application

    No full text
    International audienceFungi are considered one of the most diverse, ecologically significant, and economically important organisms on Earth. The edible and medicinal mushrooms have long been known by humans and were used by ancient civilizations not only as valuable food but also as medicines. Mushrooms are producers of high- and low-molecular-weight bioactive compounds (alkaloids, lectins, lipids, peptidoglycans, phenolics, polyketides, polysaccharides, proteins, polysaccharide-protein/peptides, ribosomal and non-ribosomal peptides, steroids, terpenoids, etc.) possessing more than 130 different therapeutic effects (analgesic, antibacterial, antifungal, anti-inflammatory, antioxidant, antiplatelet, antiviral, cytotoxic, hepatoprotective, hypocholesterolemic, hypoglycemic, hypotensive, immunomodulatory, immunosuppressive, mitogenic/regenerative, etc.). The early record of Materia Medica shows evidence of using mushrooms for treatment of different diseases. Mushrooms were widely used in the traditional medicine of many countries around the world and became great resources for modern clinical and pharmacological research. However, the medicinal and biotechnological potential of mushrooms has not been fully investigated. This review discusses recent advances in research on the pharmacological potential of mushrooms and perspectives for their clinical application

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics

    ILC Reference Design Report Volume 3 - Accelerator

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC
    corecore