12 research outputs found

    Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation

    Get PDF
    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved

    Towards the Inference of Graphs on Ordered Vertices

    No full text
    Abstract. We propose novel methods for machine learning of structured output spaces. Specifically, we consider outputs which are graphs with vertices that have a natural order. We consider the usual adjacency matrix representation of graphs, as well as two other representations for such a graph: (a) decomposing the graph into a set of paths, (b) converting the graph into a single sequence of nodes with labeled edges. For each of the three representations, we propose an encoding and decoding scheme. We also propose an evaluation measure for comparing two graphs.

    Centralization: A new method for the normalization of gene expression data

    No full text
    Microarrays measure values that are approximately proportional to the numbers of copies of different mRNA molecules in samples. Due to technical difficulties, the constant of proportionality between the measured intensities and the numbers of mRNA copies per cell is unknown and may vary for different arrays. Usually, the data are normalized (i.e., array-wise multiplied by appropriate factors) in order to compensate for this effect and to enable informative comparisons between different experiments. Centralization is a new two-step method for the computation of such normalization factors that is both biologically better motivated and more robust than standard approaches. First, for each pair of arrays the quotient of the constants of proportionality is estimated. Second, from the resulting matrix of pairwise quotients an optimally consistent scaling of the samples is computed. Contact: [email protected]

    An automated combination of kernels for predicting protein subcellular localization. Manuscript in preparation

    No full text
    Abstract: Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions. We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM) method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

    A simple iterative approach to parameter optimization

    No full text
    Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a linear scoring function combines the values for different properties of possible sequence-to-structure alignments into a single score to allow for unambigous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, the implied partial ordering on optimal alignments may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a novel approach: iterating the computation of solutions (here: threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via a systematic calibration method. We show that this procedure converges to structurally meaningful weights, that also lead to significantly improved performance on comprehensive test data sets as measured in different ways. The latter indicates that the performance of threading can be improved in general.
    corecore