332 research outputs found

    Quantum Weak Energy Inequalities for the Dirac field in Flat Spacetime

    Full text link
    Quantum Weak Energy Inequalities (QWEIs) have been established for a variety of quantum field theories in both flat and curved spacetimes. Dirac fields are known (by a result of Fewster and Verch) to satisfy QWEIs under very general circumstances. However this result does not provide an explicit formula for the QWEI bound, so its magnitude has not previously been determined. In this paper we present a new and explicit QWEI bound for Dirac fields of arbitrary mass in four-dimensional Minkowski space. We follow the methods employed by Fewster and Eveson for the scalar field, modified to take account of anticommutation relations. A key ingredient is an identity for Fourier transforms established by Fewster and Verch. We also compare our QWEI with those previously obtained for scalar and spin-1 fields.Comment: 8 pages, REVTeX4, version to appear in Phys Rev

    Quantum interest in two dimensions

    Get PDF
    The quantum interest conjecture of Ford and Roman asserts that any negative-energy pulse must necessarily be followed by an over-compensating positive-energy one within a certain maximum time delay. Furthermore, the minimum amount of over-compensation increases with the separation between the pulses. In this paper, we first study the case of a negative-energy square pulse followed by a positive-energy one for a minimally coupled, massless scalar field in two-dimensional Minkowski space. We obtain explicit expressions for the maximum time delay and the amount of over-compensation needed, using a previously developed eigenvalue approach. These results are then used to give a proof of the quantum interest conjecture for massless scalar fields in two dimensions, valid for general energy distributions.Comment: 17 pages, 4 figures; final version to appear in PR

    Quantum energy inequalities and local covariance II: Categorical formulation

    Full text link
    We formulate Quantum Energy Inequalities (QEIs) in the framework of locally covariant quantum field theory developed by Brunetti, Fredenhagen and Verch, which is based on notions taken from category theory. This leads to a new viewpoint on the QEIs, and also to the identification of a new structural property of locally covariant quantum field theory, which we call Local Physical Equivalence. Covariant formulations of the numerical range and spectrum of locally covariant fields are given and investigated, and a new algebra of fields is identified, in which fields are treated independently of their realisation on particular spacetimes and manifestly covariant versions of the functional calculus may be formulated.Comment: 27 pages, LaTeX. Further discussion added. Version to appear in General Relativity and Gravitatio

    Quantum inequalities in two dimensional curved spacetimes

    Get PDF
    We generalize a result of Vollick constraining the possible behaviors of the renormalized expected stress-energy tensor of a free massless scalar field in two dimensional spacetimes that are globally conformal to Minkowski spacetime. Vollick derived a lower bound for the energy density measured by a static observer in a static spacetime, averaged with respect to the observers proper time by integrating against a smearing function. Here we extend the result to arbitrary curves in non-static spacetimes. The proof, like Vollick's proof, is based on conformal transformations and the use of our earlier optimal bound in flat Minkowski spacetime. The existence of such a quantum inequality was previously established by Fewster.Comment: revtex 4, 5 pages, no figures, submitted to Phys. Rev. D. Minor correction

    Quantum inequalities for the free Rarita-Schwinger fields in flat spacetime

    Full text link
    Using the methods developed by Fewster and colleagues, we derive a quantum inequality for the free massive spin-32{3\over 2} Rarita-Schwinger fields in the four dimensional Minkowski spacetime. Our quantum inequality bound for the Rarita-Schwinger fields is weaker, by a factor of 2, than that for the spin-12{1\over 2} Dirac fields. This fact along with other quantum inequalities obtained by various other authors for the fields of integer spin (bosonic fields) using similar methods lead us to conjecture that, in the flat spacetime, separately for bosonic and fermionic fields, the quantum inequality bound gets weaker as the the number of degrees of freedom of the field increases. A plausible physical reason might be that the more the number of field degrees of freedom, the more freedom one has to create negative energy, therefore, the weaker the quantum inequality bound.Comment: Revtex, 11 pages, to appear in PR

    Quantum inequalities and `quantum interest' as eigenvalue problems

    Get PDF
    Quantum inequalities (QI's) provide lower bounds on the averaged energy density of a quantum field. We show how the QI's for massless scalar fields in even dimensional Minkowski space may be reformulated in terms of the positivity of a certain self-adjoint operator - a generalised Schroedinger operator with the energy density as the potential - and hence as an eigenvalue problem. We use this idea to verify that the energy density produced by a moving mirror in two dimensions is compatible with the QI's for a large class of mirror trajectories. In addition, we apply this viewpoint to the `quantum interest conjecture' of Ford and Roman, which asserts that the positive part of an energy density always overcompensates for any negative components. For various simple models in two and four dimensions we obtain the best possible bounds on the `quantum interest rate' and on the maximum delay between a negative pulse and a compensating positive pulse. Perhaps surprisingly, we find that - in four dimensions - it is impossible for a positive delta-function pulse of any magnitude to compensate for a negative delta-function pulse, no matter how close together they occur.Comment: 18 pages, RevTeX. One new result added; typos fixed. To appear in Phys. Rev.

    Quantum Inequalities for the Electromagnetic Field

    Get PDF
    A quantum inequality for the quantized electromagnetic field is developed for observers in static curved spacetimes. The quantum inequality derived is a generalized expression given by a mode function expansion of the four-vector potential, and the sampling function used to weight the energy integrals is left arbitrary up to the constraints that it be a positive, continuous function of unit area and that it decays at infinity. Examples of the quantum inequality are developed for Minkowski spacetime, Rindler spacetime and the Einstein closed universe.Comment: 19 pages, 1 table and 1 figure. RevTex styl

    On the spin-statistics connection in curved spacetimes

    Full text link
    The connection between spin and statistics is examined in the context of locally covariant quantum field theory. A generalization is proposed in which locally covariant theories are defined as functors from a category of framed spacetimes to a category of *-algebras. This allows for a more operational description of theories with spin, and for the derivation of a more general version of the spin-statistics connection in curved spacetimes than previously available. The proof involves a "rigidity argument" that is also applied in the standard setting of locally covariant quantum field theory to show how properties such as Einstein causality can be transferred from Minkowski spacetime to general curved spacetimes.Comment: 17pp. Contribution to the proceedings of the conference "Quantum Mathematical Physics" (Regensburg, October 2014

    The Quantum Interest Conjecture

    Get PDF
    Although quantum field theory allows local negative energy densities and fluxes, it also places severe restrictions upon the magnitude and extent of the negative energy. The restrictions take the form of quantum inequalities. These inequalities imply that a pulse of negative energy must not only be followed by a compensating pulse of positive energy, but that the temporal separation between the pulses is inversely proportional to their amplitude. In an earlier paper we conjectured that there is a further constraint upon a negative and positive energy delta-function pulse pair. This conjecture (the quantum interest conjecture) states that a positive energy pulse must overcompensate the negative energy pulse by an amount which is a monotonically increasing function of the pulse separation. In the present paper we prove the conjecture for massless quantized scalar fields in two and four-dimensional flat spacetime, and show that it is implied by the quantum inequalities.Comment: 17 pages, Latex, 3 figures, uses eps
    corecore