Quantum inequalities (QI's) provide lower bounds on the averaged energy
density of a quantum field. We show how the QI's for massless scalar fields in
even dimensional Minkowski space may be reformulated in terms of the positivity
of a certain self-adjoint operator - a generalised Schroedinger operator with
the energy density as the potential - and hence as an eigenvalue problem. We
use this idea to verify that the energy density produced by a moving mirror in
two dimensions is compatible with the QI's for a large class of mirror
trajectories. In addition, we apply this viewpoint to the `quantum interest
conjecture' of Ford and Roman, which asserts that the positive part of an
energy density always overcompensates for any negative components. For various
simple models in two and four dimensions we obtain the best possible bounds on
the `quantum interest rate' and on the maximum delay between a negative pulse
and a compensating positive pulse. Perhaps surprisingly, we find that - in four
dimensions - it is impossible for a positive delta-function pulse of any
magnitude to compensate for a negative delta-function pulse, no matter how
close together they occur.Comment: 18 pages, RevTeX. One new result added; typos fixed. To appear in
Phys. Rev.