117 research outputs found
Recommended from our members
Considering the switch: Challenges of transitioning to non-lead hunting ammunition
In this issue of The Condor: Ornithological Applications, Haig et al. (2014) summarize negative impacts of lead ammunition and fishing tackle on birds and discuss strategies for mitigating risks to wildlife and human health. Their Review raises an important set of questions for hunters, wildlife managers, and conservation scientists. Effective mitigation will require careful understanding of technical, economic, and social dimensions of the problem. Here, I focus on challenges specific to adopting non-lead ammunition for hunting, particularly for large game animals. I discuss limitations of using the ban on lead ammunition for waterfowl hunting as an analog for reducing lead use for other types of hunting, explain important technical considerations in design and use of non-lead ammunition, and point out areas where effective non-lead alternatives are still lacking. I suggest that currently available economic analyses of the cost of non-lead alternatives are inadequate and do not recognize wide variation in hunter behavior. These considerations have strong implications for designing effective outreach and predicting responses of hunters asked to consider non-lead alternatives. Enforcing outright bans on using lead ammunition for all types of hunting, as recently enacted in California, may prove even more challenging than similar restrictions for waterfowl hunting. Despite this, I propose that major reductions in exposure of wildlife and people to lead bullet fragments are achievable, particularly through outreach and incentive programs that focus on the most commonly used types of firearms for big game hunting—high velocity modern rifles. Bullets from these widely used rifles typically produce the most lead fragments and have the best selection of effective non-lead options available at this time. Efforts to change hunter behavior must recognize the true costs and challenges of changing to non-lead ammunition. Likewise, hunters should recognize and accept their important role in wildlife conservation and work to embrace effective alternatives to lead as they become available.Keywords: hunting, lead, hunter outreach, bullets, ammunitio
Recommended from our members
Forest thinning changes movement patterns and habitat use by Pacific marten
Simplifying stand structure to reduce fuel density is a high priority for forest managers; however, affects to Pacific marten (Martes caurina) movement and connectivity are unknown. We evaluated whether thinning forests to reduce fuels influenced movements of Pacific marten. We collected movement paths from 22 martens using global positioning system telemetry to evaluate habitat selection and describe movement patterns. We quantified motion variance, speed, and path sinuosity in 3 stand types that differed in structural complexity (i.e., complex [dense], simple [thinned], and open). We hypothesized marten movement would differ between stand types and predicted that 1) martens would select stand types with increased structural complexity (complex > simple > open); 2) movements would increase in complexity (sinuosity, motion variance) and decrease in speed when martens traveled through stands with increased structural complexity; 3) speeds would increase during summer, indicating increased movement during the breeding season; and 4) males would move more rapidly because of their larger home ranges. Martens traveled 0.5–27.2 km/day and an average (SD) of 1.4 (0.4) km/hour. Martens selected home ranges with fewer openings compared to the study area overall. Within home ranges, martens strongly selected complex stands over simple stands and openings. Speed and movement complexity were most consistent over time and movements were more sinuous and slower in complex stand types compared with openings and simple stands. Movement was erratic and more linear in openings than in both complex and simple stands. In simple stands, movement patterns were intermediate between complex stands and openings. Females generally moved more slowly, sinuously, and less variably compared to males. Martens moved more quickly, less sinuously, and more variably during winter compared to summer. However, martens avoided stands with simplified structure, and the altered patterns of movement we observed in those stands suggested that such treatments may negatively affect the ability of martens to forage without increased risk of predation. Fuel treatments that simplify stand structure negatively affected marten movements and habitat connectivity. Given these risks, and because treating fuels is less justified in high elevation forests, the risks can be minimized by applying treatments below the elevations where martens typically occur.Keywords: predation, marten, thinning, risk, movement, vigilance, Martes caurina, California, travel speed, animal movemen
Local Extinction and Unintentional Rewilding of Bighorn Sheep (Ovis canadensis) on a Desert Island
Bighorn sheep ( Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476-1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct
Recommended from our members
Using network theory to prioritize management in a desert bighorn sheep metapopulation
Connectivity models using empirically-derived
landscape resistance maps can predict potential
linkages among fragmented animal and plant populations.
However, such models have rarely been used to
guide systematic decision-making, such as identifying
the most important habitat patches and dispersal corridors
to protect or restore in order to maximize regional
connectivity. Combining resistance models with network
theory offers one means of prioritizing management
for connectivity, and we applied this approach to a
metapopulation of desert bighorn sheep (Ovis canadensis
nelsoni) in the Mojave Desert of the southwestern
United States. We used a genetic-based landscape
resistance model to construct network models of genetic
connectivity (potential for gene flow) and demographic connectivity (potential for colonization of empty habitat
patches), which may differ because of sex-biased
dispersal in bighorn sheep. We identified high-priority
habitat patches and corridors and found that the type of
connectivity and the network metric used to quantify
connectivity had substantial effects on prioritization
results, although some features ranked highly across all
combinations. Rankings were also sensitive to our
empirically-derived estimates of maximum effective
dispersal distance, highlighting the importance of this
often-ignored parameter. Patch-based analogs of our
network metrics predicted both neutral and mitochondrial
genetic diversity of 25 populations within the study
area. This study demonstrates that network theory can
enhance the utility of landscape resistance models as
tools for conservation, but it is critical to consider the
implications of sex-biased dispersal, the biological
relevance of network metrics, and the uncertainty
associated with dispersal range and behavior when
using this approach.Keywords: Gene flow,
Colonization,
Connectivity,
Dispersal,
Graph theory,
Extinction,
Habitat patch,
Fragmented population,
Landscape resistanc
Recommended from our members
Landscape effects on gene flow for a climate-sensitive montane species, the American pika
Climate change is arguably the greatest challenge to conservation of our time. Most vulnerability assessments rely on past and current species distributions to predict future persistence but ignore species’ abilities to disperse through landscapes, which may be particularly important in fragmented habitats and crucial for long-term persistence in changing environments. Landscape genetic approaches explore the interactions between landscape features and gene flow and can clarify how organisms move among suitable habitats, but have suffered from methodological uncertainties. We used a landscape genetic approach to determine how landscape and climate-related features influence gene flow for American pikas (Ochotona princeps) in Crater Lake National Park. Pikas are heat intolerant and restricted to cool microclimates; thus, range contractions have been predicted as climate changes. We evaluated the correlation between landscape variables and genetic distance using partial Mantel tests in a causal modelling framework, and used spatially explicit simulations to evaluate methods of model optimization including a novel approach based on relative support and reciprocal causal modelling. We found that gene flow was primarily restricted by topographic relief, water and west-facing aspects, suggesting that physical restrictions related to small body size and mode of locomotion, as well as exposure to relatively high temperatures, limit pika dispersal in this alpine habitat. Our model optimization successfully identified landscape features influencing resistance in the simulated data for this landscape, but underestimated the magnitude of resistance. This is the first landscape genetic study to address the fundamental question of what limits dispersal and gene flow in the American pika.Keywords: Landscape genetics, CDPOP, Mantel tests, Causal modellin
Recommended from our members
Predicting diet quality and genetic diversity of a desert-adapted ungulate with NDVI
Diet quality influences ungulate population dynamics but is difficult to measure at fine temporal or spatial resolution using field-intensive methods such as fecal nitrogen (FN). Increasingly, the remotely sensed vegetation index NDVI is used to represent potential ungulate diet quality, but NDVI's relationship with diet quality has yet to be examined for herbivores in desert environments. We evaluated how strongly NDVI was associated with diet quality of desert bighorn sheep (Ovis canadensis nelsoni) in the Mojave Desert using FN data from multiple years and populations. We considered effects of temporal resolution, geographic variability, and NDVI spatial summary statistic on the NDVI-diet quality relationship. NDVI was more reliably associated with diet quality over the entire growing season than with instantaneous diet quality for a population. NDVI was also positively associated with population genetic diversity, a proxy for long-term, population-level effects of diet quality. We conclude that NDVI is a useful diet quality indicator for Mojave Desert bighorn sheep and potentially other desert ungulates. However, it may not reliably track diet quality if NDVI data are too spatially coarse to detect microhabitats providing high-quality forage, or if diet is strongly influenced by forage items that are weakly correlated with landscape greenness.Keywords: Bighorn sheep, Mojave Desert, Forage, Fecal nitrogenKeywords: Bighorn sheep, Mojave Desert, Forage, Fecal nitroge
Recommended from our members
Local Extinction and Unintentional Rewilding of Bighorn Sheep (Ovis canadensis) on a Desert Island
Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and
Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable
island population of ~500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican
mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet
Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal
pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA
and control regions. The fossil dung was ¹⁴C-dated to 1476–1632 calendar years before present and was confirmed as
bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known
bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep
populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón
population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene,
when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ~1500 years,
probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced
population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn
sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding,
defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct
Recommended from our members
Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species’ niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species’ niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence–absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981–2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and – in some cases – highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species’ distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas.Keywords: genetic neighborhood, species distribution modeling, functional connectivity, Random Forest, realized niche, American pika, Ochotona princeps, National Park
Recommended from our members
The Rise of the Mesopredator
Apex predators have experienced catastrophic declines throughout the world as a result of human persecution and habitat loss. These collapses in
top predator populations are commonly associated with dramatic increases in the abundance of smaller predators. Known as “mesopredator release,”
this trophic interaction has been recorded across a range of communities and ecosystems. Mesopredator outbreaks often lead to declining prey
populations, sometimes destabilizing communities and driving local extinctions.We present an overview of mesopredator release and illustrate how
its underlying concepts can be used to improve predator management in an increasingly fragmented world. We also examine shifts in North
American carnivore ranges during the past 200 years and show that 60% of mesopredator ranges have expanded, whereas all apex predator ranges
have contracted. The need to understand how best to predict and manage mesopredator release is urgent—mesopredator outbreaks are causing high
ecological, economic, and social costs around the world
Population and spatial dynamics of desert bighorn sheep in Grand Canyon during an outbreak of respiratory pneumonia
IntroductionTerrestrial species in riverine ecosystems face unique constraints leading to diverging patterns of population structure, connectivity, and disease dynamics. Desert bighorn sheep (Ovis canadensis nelsoni) in Grand Canyon National Park, a large native population in the southwestern USA, offer a unique opportunity to evaluate population patterns and processes in a remote riverine system with ongoing anthropogenic impacts. We integrated non-invasive, invasive, and citizen-science methods to address questions on abundance, distribution, disease status, genetic structure, and habitat fragmentation.MethodsWe compiled bighorn sightings collected during river trips by park staff, commercial guides, and private citizens from 2000–2018 and captured bighorn in 2010–2016 to deploy GPS collars and test for disease. From 2011–2015, we non-invasively collected fecal samples and genotyped them at 9–16 microsatellite loci for individual identification and genetic structure. We used assignment tests to evaluate genetic structure and identify subpopulations, then estimated gene flow and recent migration to evaluate fragmentation. We used spatial capture-recapture to estimate annual population size, distribution, and trends after accounting for spatial variation in detection with a resource selection function model.Results and discussionFrom 2010–2018, 3,176 sightings of bighorn were reported, with sightings of 56–145 bighorn annually on formal surveys. From 2012–2016, bighorn exhibiting signs of respiratory disease were observed along the river throughout the park. Of 25 captured individuals, 56% were infected by Mycoplasma ovipneumoniae, a key respiratory pathogen, and 81% were recently exposed. Pellet sampling for population estimation from 2011–2015 yielded 1,250 genotypes and 453 individuals. We detected 6 genetic clusters that exhibited mild to moderate genetic structure (FST 0.022–0.126). The river, distance, and likely topography restricted recent gene flow, but we detected cross-river movements in one section via genetic recaptures, no subpopulation appeared completely isolated, and genetic diversity was among the highest reported. Recolonization of one large stretch of currently empty habitat appears limited by the constrained topology of this system. Annual population estimates ranged 536–552 (95% CrI range 451–647), lamb:ewe ratios varied, and no significant population decline was detected. We provide a multi-method sampling framework useful for sampling other wildlife in remote riverine systems
- …