22 research outputs found

    New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions

    Full text link
    We propose a new algorithm of the finite lattice method to generate the high-temperature series for the Ising model in three dimensions. It enables us to extend the series for the free energy of the simple cubic lattice from the previous series of 26th order to 46th order in the inverse temperature. The obtained series give the estimate of the critical exponent for the specific heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Percolation and epidemics in a two-dimensional small world

    Full text link
    Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant diseases. In this paper we give an analytic solution of this model using a combination of generating function methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the position of the percolation threshold and the typical size of disease outbreaks as a function of the density of "shortcuts" in the small-world network. Our results agree with scaling hypotheses and numerical simulations for the same model.Comment: 7 pages, 3 figures, 2 table

    Planar lattice gases with nearest-neighbour exclusion

    Full text link
    We discuss the hard-hexagon and hard-square problems, as well as the corresponding problem on the honeycomb lattice. The case when the activity is unity is of interest to combinatorialists, being the problem of counting binary matrices with no two adjacent 1's. For this case we use the powerful corner transfer matrix method to numerically evaluate the partition function per site, density and some near-neighbour correlations to high accuracy. In particular for the square lattice we obtain the partition function per site to 43 decimal places.Comment: 16 pages, 2 built-in Latex figures, 4 table

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial

    Get PDF
    We derive some new structural results for the transfer matrix of square-lattice Potts models with free and cylindrical boundary conditions. In particular, we obtain explicit closed-form expressions for the dominant (at large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as the solution of a special one-dimensional polymer model. We also obtain the large-q expansion of the bulk and surface (resp. corner) free energies for the zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47} (resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <= m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19 Postscript figures. Also included are Mathematica files data_CYL.m and data_FREE.m. Many changes from version 1: new material on series expansions and their analysis, and several proofs of previously conjectured results. Final version to be published in J. Stat. Phy

    Transfer matrices and partition-function zeros for antiferromagnetic Potts models. VI. Square lattice with special boundary conditions

    Get PDF
    We study, using transfer-matrix methods, the partition-function zeros of the square-lattice q-state Potts antiferromagnet at zero temperature (= square-lattice chromatic polynomial) for the special boundary conditions that are obtained from an m x n grid with free boundary conditions by adjoining one new vertex adjacent to all the sites in the leftmost column and a second new vertex adjacent to all the sites in the rightmost column. We provide numerical evidence that the partition-function zeros are becoming dense everywhere in the complex q-plane outside the limiting curve B_\infty(sq) for this model with ordinary (e.g. free or cylindrical) boundary conditions. Despite this, the infinite-volume free energy is perfectly analytic in this region.Comment: 114 pages (LaTeX2e). Includes tex file, three sty files, and 23 Postscript figures. Also included are Mathematica files data_Eq.m, data_Neq.m,and data_Diff.m. Many changes from version 1, including several proofs of previously conjectured results. Final version to be published in J. Stat. Phy

    Offsetting methane emissions : an alternative to emission equivalence metrics

    Get PDF
    It is widely recognised that defining trade-offs between greenhouse gas emissions using ‘emission equivalence’ based on global warming potentials (GWPs) referenced to carbon dioxide produces anomalous results when applied to methane. The short atmospheric lifetime of methane, compared to the timescales of CO2 uptake, leads to the greenhouse warming depending strongly on the temporal pattern of emission substitution. We argue that a more appropriate way to consider the relationship between the warming effects of methane and carbon dioxide is to define a ‘mixed metric’ that compares ongoing methane emissions (or reductions) to one-off emissions (or reductions) of carbon dioxide. Quantifying this approach, we propose that a one-off sequestration of 1 t of carbon would offset an ongoing methane emission in the range 0.90–1.05 kg CH4 per year. We present an example of how our approach would apply to rangeland cattle production, and consider the broader context of mitigation of climate change, noting the reverse trade-off would raise significant challenges in managing the risk of non-compliance. Our analysis is consistent with other approaches to addressing the criticisms of GWP-based emission equivalence, but provides a simpler and more robust approach while still achieving close equivalence of climate mitigation outcomes ranging over decadal to multi-century timescales
    corecore