6 research outputs found

    The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases

    No full text
    Animal and fungal cells (in contrast to prokaryotes) contain two distinct sets of related aminoacyl-tRNA synthetases (aaRSs) encoded by nuclear genes and functioning in cytosol and mitochondria. The structural differences between mitochondrial and cytoplasmic enzymes may reflect the functional adaptation to fulfil mitochondrial processes in addition to protein synthesis. Mitochondrial import of nuclearencoded tRNAs has been described in yeast, plants and protozoans but it has not been observed in mammalian cells. Ifs established that mitochondrial lysyl-tRNA synthetase (MSK) plays a prominent role in the transport of tRNA into yeast mitochondria for complementation o f mitochondrial tRNAs genes mutations. We tried to identify MSK homologues in mammalian cells with the help of monospecific antibodies against pre-MSK by ELISA and Western-blot analysis. We have identified cross-reactive proteins in mitochondrial and cytoplasmic fractions of mammalian cell lysates. These data, together with the results of cross-aminoacylation on mitochondrial and cytoplasmic tRNAs, suggest the presence of common antigenic determinants in the mitochondrial and cytoplasmic lysyl-tRNA synthetases from higher animals.ΠšΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ Π΅ΡƒΠΊΠ°Ρ€Ρ–ΠΎΡ‚ Π½Π° Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ ΠΏΡ€ΠΎΠΊΠ°Ρ€Ρ–ΠΎΡ‚ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Π΄Π²Ρ– Ρ€Ρ–Π·Π½Ρ– Π³Ρ€ΡƒΠΏΠΈ Π°ΠΌΡ–Π½ΠΎΠ°Ρ†ΠΈΠ»-Ρ‚Π ΠΠš синтСтаз, які ΠΊΠΎΠ΄ΡƒΡŽΡ‚ΡŒΡΡ ядСрним Π³Π΅Π½ΠΎΠΌΠΎΠΌ Ρ‚Π° Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½ΡƒΡŽΡ‚ΡŒ Π² Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»Ρ– Ρ– мітохондріях. Π‘Ρ‚Ρ€ΡƒΠΊΒ­Ρ‚ΡƒΡ€Π½Ρ– відмінності ΠΌΡ–ΠΆ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–ΠΉ Ρ– Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·Β­ΠΌΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ відобраТСнням Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡ— Π°Π΄Π°ΠΏΡ‚Π°Ρ†Ρ–Ρ— Π΄ΠΎ процСсів, які Π²Ρ–Π΄Π±ΡƒΠ²Π°ΡŽΡ‚ΡŒΡΡ Π² мітохондріях, ΠΊΡ€Ρ–ΠΌ участі Π² біосинтСзі Π±Ρ–Π»ΠΊΠ°. Π†ΠΌΠΏΠΎΡ€Ρ‚ Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒΠ½ΠΈΡ… Ρ‚Π ΠΠš Ρƒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Ρ— описано для Π΄Ρ€Ρ–ΠΆΠ΄ΠΆΡ–Π², рослин Ρ– найпростіиіих, ΠΎΠ΄Π½Π°ΠΊ Π²Ρ–Π½ Π½Π΅ спостСрігався Π² ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… ссавців. ВиявлСно, Ρ‰ΠΎ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½Π° Π»Ρ–Π·ΠΈΠ»-Ρ‚Π ΠΠš синтСтаза (MSK) Π²Ρ–Π΄Ρ–Π³Ρ€Π°Ρ” ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½Ρƒ Ρ€ΠΎΠ»ΡŒ Ρƒ транспорті Ρ‚Π ΠΠš Ρƒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Ρ— Π΄Ρ€Ρ–ΠΆΠ΄ΠΆΡ–Π² для ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Β­Ρ‚Π°Ρ†Ρ–Ρ— ΠΌΡƒΡ‚Π°Ρ†Ρ–ΠΉ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΡ… Π³Π΅Π½Ρ–Π² Ρ‚Π ΠΠš Π—Π° допомогою моноспСцифічних Π°Π½Ρ‚ΠΈΡ‚Ρ–Π» ΠΏΡ€ΠΎΡ‚ΠΈ npe-MSK ΠΌΠΈ Π·Ρ€ΠΎΠ±ΠΈΠ»ΠΈ спробу Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΡƒΠ²Π°Ρ‚ΠΈ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈ MSK Ρƒ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… ссавців ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ELISA Ρ– ВСстСрн-Π±Π»ΠΎΡ‚ΠΈΠ½Π³Π°. Π’ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ– ΠΌΡ–Ρ‚ΠΎΒ­Ρ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΡ… фракціях Π»Ρ–Π·Π°Ρ‚Ρ–Π² ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ссавців Π½Π°ΠΌ вдалося виявити Π±Ρ–Π»ΠΊΠΈ, які ΠΌΠ°ΡŽΡ‚ΡŒ Ρ–ΠΌΡƒΠ½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΉ пСрСхрСст Π· MSK Π Π°Π·ΠΎΠΌ Π· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ пСрСхрСсного Π°ΠΌΡ–Π½ΠΎΠ°Ρ†ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ Ρ†Ρ– Π΄Π°Π½Ρ– Π΄Π°ΡŽΡ‚ΡŒ підставу для припущСння Ρ‰ΠΎΠ΄ΠΎ наявності ΡΠΏΡ–Π»ΡŒΠ½ΠΈΡ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π½ΠΈΡ… Π΄Π΅Ρ‚Π΅Ρ€ΠΌΡ–Π½Π°Π½Ρ‚ Ρƒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΡ… Ρ– Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ°Β­Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π»Ρ–Π·ΠΈΠ»-Ρ‚Π ΠΠš синтСтаз ссавців.ΠšΠ»Π΅Ρ‚ΠΊΠΈ эукариот (Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚) содСрТат Π΄Π²Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»-Ρ‚Π ΠΠš синтСтаз, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅Β­ΠΌΡ‹Ρ… ядСрным Π³Π΅Π½ΠΎΠΌΠΎΠΌ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π² Ρ† ΠΈ Ρ‚ΠΎ Π·ΠΎΠ»Π΅ ΠΈ митохондриях. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ отличия ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΈ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΒ­ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΊ процСссам, происходящим Π² митохонд­риях ΠΏΠΎΠΌΠΈΠΌΠΎ участия Π² биосинтСзС Π±Π΅Π»ΠΊΠ° Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ описан Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, растСний ΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ…, ΠΎΠ΄Π½Π°ΠΊΠΎ Π½Π΅ наблюдался Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΒ­Ρ‰ΠΈΡ…. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Π»ΠΈΠ·ΠΈΠ»-Ρ‚Π ΠΠš син­тСтаза (MSK) ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π΅Π΄ΡƒΡ‰ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² транспортС Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ для ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π ΠΠš. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ моноспСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΏΡ€ΠΎΡ‚ΠΈΠ² npe-MSK ΠΌΡ‹ ΠΏΠΎΠΏΡ‹Ρ‚Π°Π»ΠΈΡΡŒ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈ MSK Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ELISA ΠΈ ВСстСрн-Π±Π»ΠΎΡ‚ΠΈΠ½Π³Π°. Π’ цитоплазматичСских ΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… фракциях Π»ΠΈΠ·Π°Ρ‚ΠΎΠ² ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π°ΠΌ ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ Π±Π΅Π»ΠΊΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ иммунологичСский пСрСкрСст с MSK Π’ совокупности с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ пСрСкрСстного аминоацилирования эти Π΄Π°Π½Π½Ρ‹Π΅ Π΄Π°ΡŽΡ‚ основаниС ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π°Π»ΠΈΒ­Ρ‡ΠΈΠ΅ ΠΎΠ±Ρ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚ Ρƒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ цитоплазматичСских Π»ΠΈΠ·ΠΈΠ»-Ρ‚Π ΠΠš синтСтаз Π²Ρ‹ΡΡˆΠΈΡ… ΠΆΠΈΠ²ΠΎΒ­Ρ‚Π½Ρ‹Ρ…

    Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    Get PDF
    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements
    corecore