16 research outputs found

    Is the 21-Gene Recurrence Score on Core Needle Biopsy Equivalent to Surgical Specimen in Early-Stage Breast Cancer? A Comparison of Gene Expression Between Paired Core Needle Biopsy and Surgical Specimens.

    No full text
    BACKGROUND: Molecular testing on surgical specimens predicts disease recurrence and benefit of adjuvant chemotherapy in hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) early-stage breast cancer (EBC). Testing on core biopsies has become common practice despite limited evidence of concordance between core/surgical samples. In this study, we compared the gene expression of the 21 genes and the recurrence score (RS) between paired core/surgical specimens. METHODS: Eighty patients with HR+/HER2- EBC were evaluated from two publicly available gene expression datasets (GSE73235, GSE76728) with paired core/surgical specimens without neoadjuvant systemic therapy. The expression of the 21 genes was compared in paired samples. A microarray-based RS was calculated and a value ≥ 26 was defined as high-RS. The concordance rate and kappa statistic were used to evaluate the agreement between the RS of paired samples. RESULTS: Overall, there was no significant difference and a high correlation in the gene expression levels of the 21 genes between paired samples. However, CD68 and RPLP0 in GSE73235, AURKA, BAG1, and TFRC in GSE76728, and MYLBL2 and ACTB in both datasets exhibited weak to moderate correlation (r \u3c 0.5). There was a high correlation of the microarray-based RS between paired samples in GSE76728 (r = 0.91, 95% confidence interval [CI] 0.81-0.96) and GSE73235 (r = 0.82, 95% CI 0.71-0.89). There were no changes in RS category in GSE76728, whereas 82% of patients remained in the same RS category in GSE73235 (κ = 0.64). CONCLUSIONS: Gene expression levels of the 21-gene RS showed a high correlation between paired specimens. Potential sampling and biological variability on a set of genes need to be considered to better estimate the RS from core needle biopsy

    ASO Visual Abstract: Epigenetic Signatures Predict Pathologic Nodal Stage in Breast Cancer Patients with Estrogen-Receptor-Positive, Clinically Node-Positive Disease.

    No full text
    BACKGROUND: Breast cancer patients with clinically positive nodes who undergo upfront surgery are often recommended for axillary lymph node dissection (ALND), yet more than half are found to have limited nodal disease (≤ 3 positive nodes, pN1) at surgery. In this study, we examined the efficiency of molecular classifiers in stratifying patients with clinically positive nodes to pN1 versus \u3e pN1 disease. METHODS: We evaluated the clinical and epigenetic data of patients in The Cancer Genome Atlas with estrogen receptor-positive, human epidermal growth factor receptor 2-negative invasive ductal carcinoma who underwent ALND for node-positive disease. Patients were divided into control (pN1, ≤ 3 positive nodes) and case (\u3e pN1, \u3e 3 positive nodes) groups. Machine learning algorithms were trained on 50% of the cohort and validated on the remaining 50% to identify DNA methylation signatures that predict \u3e pN1 disease. Clinical variables and epigenetic signatures were compared. RESULTS: Controls (n = 34) and case (n = 24) cohorts showed similar mean age (56.4 ± 12.2 vs. 57.6 ± 16.7 years; p = 0.77), number of nodes removed (16.1 ± 7.3 vs. 17.5 ± 6.2; p = 0.45), tumor grade (p = 0.76), presence of lymphovascular invasion (p = 0.18), extranodal extension (p = 0.17), tumor laterality (p = 0.89), and tumor location (p = 0.42). The mean number of positive nodes was significantly different (1.76 ± 0.82, pN1; 8.83 ± 5.36, \u3e pN1; p \u3c 0.001). Three epigenetic signatures (EpiSig14, EpiSig13, EpiSig10) based on DNA methylation patterns of the primary tumors demonstrated high accuracy in predicting \u3e pN1 disease (area under the curve 0.98). CONCLUSIONS: Epigenetic signatures have an excellent diagnostic accuracy for stratifying nodal disease in patients with clinically positive nodes. Validation of this tool is warranted and may provide an accurate and cost-effective method of identifying patients with predicted low nodal burden who could be spared the morbidity of ALND

    Current Triple-Negative Breast Cancer Subtypes: Dissecting the Most Aggressive Form of Breast Cancer.

    No full text
    Triple-negative breast cancer (TNBC) is a highly heterogeneous disease defined by the absence of estrogen receptor (ER) and progesterone receptor (PR) expression, and human epidermal growth factor receptor 2 (HER2) overexpression that lacks targeted treatments, leading to dismal clinical outcomes. Thus, better stratification systems that reflect intrinsic and clinically useful differences between TNBC tumors will sharpen the treatment approaches and improve clinical outcomes. The lack of a rational classification system for TNBC also impacts current and emerging therapeutic alternatives. In the past years, several new methodologies to stratify TNBC have arisen thanks to the implementation of microarray technology, high-throughput sequencing, and bioinformatic methods, exponentially increasing the amount of genomic, epigenomic, transcriptomic, and proteomic information available. Thus, new TNBC subtypes are being characterized with the promise to advance the treatment of this challenging disease. However, the diverse nature of the molecular data, the poor integration between the various methods, and the lack of cost-effective methods for systematic classification have hampered the widespread implementation of these promising developments. However, the advent of artificial intelligence applied to translational oncology promises to bring light into definitive TNBC subtypes. This review provides a comprehensive summary of the available classification strategies. It includes evaluating the overlap between the molecular, immunohistochemical, and clinical characteristics between these approaches and a perspective about the increasing applications of artificial intelligence to identify definitive and clinically relevant TNBC subtypes

    Epigenetic Regulation of Immunotherapy Response in Triple-Negative Breast Cancer.

    No full text
    Triple-negative breast cancer (TNBC) is defined by the absence of estrogen receptor and progesterone receptor and human epidermal growth factor receptor 2 (HER2) overexpression. This malignancy, representing 15-20% of breast cancers, is a clinical challenge due to the lack of targeted treatments, higher intrinsic aggressiveness, and worse outcomes than other breast cancer subtypes. Immune checkpoint inhibitors have shown promising efficacy for early-stage and advanced TNBC, but this seems limited to a subgroup of patients. Understanding the underlying mechanisms that determine immunotherapy efficiency is essential to identifying which TNBC patients will respond to immunotherapy-based treatments and help to develop new therapeutic strategies. Emerging evidence supports that epigenetic alterations, including aberrant chromatin architecture conformation and the modulation of gene regulatory elements, are critical mechanisms for immune escape. These alterations are particularly interesting since they can be reverted through the inhibition of epigenetic regulators. For that reason, several recent studies suggest that the combination of epigenetic drugs and immunotherapeutic agents can boost anticancer immune responses. In this review, we focused on the contribution of epigenetics to the crosstalk between immune and cancer cells, its relevance on immunotherapy response in TNBC, and the potential benefits of combined treatments

    Glioblastoma Embryonic-like Stem Cells Exhibit Immune-Evasive Phenotype.

    No full text
    BACKGROUND: Glioma stem cells (GSCs) have self-renewal and tumor-initiating capacities involved in drug resistance and immune evasion mechanisms in glioblastoma (GBM). METHODS: Core-GSCs (c-GSCs) were identified by selecting cells co-expressing high levels of embryonic stem cell (ESC) markers from a single-cell RNA-seq patient-derived GBM dataset ( RESULTS: We identified a GSC population (4.22% ± 0.59) exhibiting concurrent high expression of ESC markers and downregulation of immune-associated pathways, named c-GSCs. In vitro ic-GSCs presented high expression of ESC markers and downregulation of antigen presentation HLA proteins. Transcriptomic analysis revealed a strong agreement of enriched biological pathways between tumor c-GSCs and in vitro ic-GSCs ( CONCLUSIONS: This study unravels glioblastoma immune-evasive mechanisms involving a c-GSC population. In addition, it provides a cellular model with paired gene expression, and DNA methylation maps to explore potential therapeutic complements for GBM immunotherapy

    Clinicopathological Features of Triple-Negative Breast Cancer Epigenetic Subtypes.

    No full text
    BACKGROUND/OBJECTIVE: Triple-negative breast cancer (TNBC) is a heterogeneous collection of breast tumors with numerous differences including morphological characteristics, genetic makeup, immune-cell infiltration, and response to systemic therapy. DNA methylation profiling is a robust tool to accurately identify disease-specific subtypes. We aimed to generate an epigenetic subclassification of TNBC tumors (epitypes) with utility for clinical decision-making. METHODS: Genome-wide DNA methylation profiles from TNBC patients generated in the Cancer Genome Atlas project were used to build machine learning-based epigenetic classifiers. Clinical and demographic variables, as well as gene expression and gene mutation data from the same cohort, were integrated to further refine the TNBC epitypes. RESULTS: This analysis indicated the existence of four TNBC epitypes, named as Epi-CL-A, Epi-CL-B, Epi-CL-C, and Epi-CL-D. Patients with Epi-CL-B tumors showed significantly shorter disease-free survival and overall survival [log rank; P = 0.01; hazard ratio (HR) 3.89, 95% confidence interval (CI) 1.3-11.63 and P = 0.003; HR 5.29, 95% CI 1.55-18.18, respectively]. Significant gene expression and mutation differences among the TNBC epitypes suggested alternative pathway activation that could be used as ancillary therapeutic targets. These epigenetic subtypes showed complementarity with the recently described TNBC transcriptomic subtypes. CONCLUSIONS: TNBC epigenetic subtypes exhibit significant clinical and molecular differences. The links between genetic make-up, gene expression programs, and epigenetic subtypes open new avenues in the development of laboratory tests to more efficiently stratify TNBC patients, helping optimize tailored treatment approaches
    corecore