7 research outputs found

    Table1_Automatic segmentation of skeletal muscles from MR images using modified U-Net and a novel data augmentation approach.docx

    No full text
    Rapid and accurate muscle segmentation is essential for the diagnosis and monitoring of many musculoskeletal diseases. As gold standard, manual annotation suffers from intensive labor and high inter-operator reproducibility errors. In this study, deep learning (DL) based automatic muscle segmentation from MR scans is investigated for post-menopausal women, who normally experience a decline in muscle volume. The performance of four Deep Learning (DL) models was evaluated: U-Net and UNet++ and two modified U-Net networks, which combined feature fusion and attention mechanisms (Feature-Fusion-UNet, FFU, and Attention-Feature-Fusion-UNet, AFFU). The models were tested for automatic segmentation of 16-lower limb muscles from MRI scans of two cohorts of post-menopausal women (11 subjects in PMW-1, 8 subjects in PMW-2; from two different studies so considered independent datasets) and 10 obese post-menopausal women (PMW-OB). Furthermore, a novel data augmentation approach is proposed to enlarge the training dataset. The results were assessed and compared by using the Dice similarity coefficient (DSC), relative volume error (RVE), and Hausdorff distance (HD). The best performance among all four DL models was achieved by AFFU (PMW-1: DSC 0.828 ± 0.079, 1-RVE 0.859 ± 0.122, HD 29.9 mm ± 26.5 mm; PMW-2: DSC 0.833 ± 0.065, 1-RVE 0.873 ± 0.105, HD 25.9 mm ± 27.9 mm; PMW-OB: DSC 0.862 ± 0.048, 1-RVE 0.919 ± 0.076, HD 34.8 mm ± 46.8 mm). Furthermore, the augmentation of data significantly improved the DSC scores of U-Net and AFFU for all 16 tested muscles (between 0.23% and 2.17% (DSC), 1.6%–1.93% (1-RVE), and 9.6%–19.8% (HD) improvement). These findings highlight the feasibility of utilizing DL models for automatic segmentation of muscles in post-menopausal women and indicate that the proposed augmentation method can enhance the performance of models trained on small datasets.</p

    Workflow used to compare predicted and experimental local displacements and axial forces predicted.

    No full text
    <p>An example of the step-wise load displacement curve is reported on the top highlighting the Preloaded (1) and Loaded (5% apparent strain, 2) conditions. A picture of the loading jig and a scheme of the sample fixation are reported on the top-right corner. The Digital Volume Correlation (DVC) algorithm was applied to the Preloaded and Loaded images to calculate the map of displacement in the whole vertebral body. MicroFE models of the vertebral body between the PMMA pots were generated from the preloaded image after the application of a single level threshold chosen from the analyses of the frequency plot of the grey-values and visual inspection. The displacement values at the top and bottom layer of the microFE models were assigned by interpolation of the DVC measurements in those planes. Displacements along the axial (Z) and transverse (X, Y) directions were compared between microFE predictions and DVC measurements at the nodes of the DVC grid that lay within microFE elements. Predicted axial forces were compared to those measured from the experimental load-displacement curves (ΔF).</p

    Regression analysis of microFE models predictions of local displacements per specimen and bone type.

    No full text
    <p>MicroFE models predictions and DVC measurements computed along the transverse (X, Y) and axial (Z) directions for each specimen within cortical (red circles) and trabecular (black crosses) bone regions.</p

    Linear regression analysis between experimental and predicted local displacements for a tissue modulus E<sub>t</sub> = 12.0GPa.

    No full text
    <p>Data are reported for predictions along the three Cartesian directions (X and Y in a transverse plane, Z in the axial direction) for the individual specimens and for pooled data.</p

    Overview of the elastic modulus of human vertebral bone tissue reported in the literature from wet microindentation tests performed at the BSU level, or from back-calculation procedures in combination with microFE models.

    No full text
    <p>Overview of the elastic modulus of human vertebral bone tissue reported in the literature from wet microindentation tests performed at the BSU level, or from back-calculation procedures in combination with microFE models.</p
    corecore