7,248 research outputs found

    NLS ground states on graphs

    Full text link
    We investigate the existence of ground states for the subcritical NLS energy on metric graphs. In particular, we find out a topological assumption that guarantees the nonexistence of ground states, and give an example in which the assumption is not fulfilled and ground states actually exist. In order to obtain the result, we introduce a new rearrangement technique, adapted to the graph where it applies. Owing to such a technique, the energy level of the rearranged function is improved by conveniently mixing the symmetric and monotone rearrangement procedures.Comment: 24 pages, 4 figure

    Galilean Genesis: an alternative to inflation

    Full text link
    We propose a novel cosmological scenario, in which standard inflation is replaced by an expanding phase with a drastic violation of the Null Energy Condition (NEC): \dot H >> H^2. The model is based on the recently introduced Galileon theories, that allow NEC violating solutions without instabilities. The unperturbed solution describes a Universe that is asymptotically Minkowski in the past, expands with increasing energy density until it exits the regime of validity of the effective field theory and reheats. This solution is a dynamical attractor and the Universe is driven to it, even if it is initially contracting. The study of perturbations of the Galileon field reveals some subtleties, related to the gross violation of the NEC and it shows that adiabatic perturbations are cosmologically irrelevant. The model, however, suggests a new way to produce a scale invariant spectrum of isocurvature perturbations, which can later be converted to adiabatic: the Galileon is forced by symmetry to couple to the other fields as a dilaton; the effective metric it yields on the NEC violating solution is that of de Sitter space, so that all light scalars will automatically acquire a nearly scale-invariant spectrum of perturbations.Comment: 25 pages, 1 figure. v2: minor changes, JCAP published versio

    Nonlinear dynamics on branched structures and networks

    Full text link
    Nonlinear dynamics on graphs has rapidly become a topical issue with many physical applications, ranging from nonlinear optics to Bose-Einstein condensation. Whenever in a physical experiment a ramified structure is involved, it can prove useful to approximate such a structure by a metric graph, or network. For the Schroedinger equation it turns out that the sixth power in the nonlinear term of the energy is critical in the sense that below that power the constrained energy is lower bounded irrespectively of the value of the mass (subcritical case). On the other hand, if the nonlinearity power equals six, then the lower boundedness depends on the value of the mass: below a critical mass, the constrained energy is lower bounded, beyond it, it is not. For powers larger than six the constrained energy functional is never lower bounded, so that it is meaningless to speak about ground states (supercritical case). These results are the same as in the case of the nonlinear Schrodinger equation on the real line. In fact, as regards the existence of ground states, the results for systems on graphs differ, in general, from the ones for systems on the line even in the subcritical case: in the latter case, whenever the constrained energy is lower bounded there always exist ground states (the solitons, whose shape is explicitly known), whereas for graphs the existence of a ground state is not guaranteed. For the critical case, our results show a phenomenology much richer than the analogous on the line.Comment: 47 pages, 44 figure. Lecture notes for a course given at the Summer School "MMKT 2016, Methods and Models of Kinetic Theory, Porto Ercole, June 5-11, 2016. To be published in Riv. Mat. Univ. Parm
    • …
    corecore