2 research outputs found

    Seed perturbations for primordial magnetic fields from MSSM flat directions

    Full text link
    We demonstrate that the MSSM flat directions can naturally account for the seed magnetic fields in the early Universe. The non-zero vacuum expectation value of an MSSM flat direction condensate provides masses to the gauge fields and thereby breaks conformal invariance. During inflation the condensate receives spatial perturbations and SU(2)xU(1)YSU(2) x U(1)_Y gauge currents are generated together with (hyper)magnetic fields. When these long wavelength vector perturbations reenter our horizon they give rise to U(1)emU(1)_{em} magnetic fields with an amplitude of 10−3010^{-30} Gauss, as required by the dynamo mechanism.Comment: 4 pages, RevTeX

    Non-Gaussianity from Instant and Tachyonic Preheating

    Full text link
    We study non-Gaussianity in two distinct models of preheating: instant and tachyonic. In instant preheating non-Gaussianity is sourced by the local terms generated through the coupled perturbations of the two scalar fields. We find that the non-Gaussianity parameter is given by fNLϕ∼2g<O(1)f_{NL}^{\phi}\sim 2g < O(1), where gg is a coupling constant, so that instant preheating is unlikely to be constrained by WMAP or Planck. In the case of tachyonic preheating non-Gaussianity arises solely from the instability of the tachyon matter and is found to be large. We find that for single field inflation the present WMAP data implies a bound V01/4/MP≤10−4V_{0}^{1/4}/M_{P}\leq 10^{-4} on the scale of tachyonic instability. We argue that the tachyonic preheating limits are useful also for string-motivated inflationary models.Comment: 12 pages, 1 figure, additional discussion, improved constraint on the scale of tachyonic preheatin
    corecore