98 research outputs found
Participation of Cbfa1 in regulation of chondrocyte maturation
AbstractObjective Cbfa1 is a transcription factor, which is classified into the runt family. The mice lacking this gene display complete loss of bone formation, indicating that Cbfa1 is an essential factor for osteoblast differentiation. The Cbfa1-deficient mice also show an abnormality in cartilage development. Although cartilage anlagens are well formed in these mice, endochondral ossification is blocked, and most of chondrocytes fail to differentiate into their maturation form as characterized by the absence of type X collagen and low levels of alkaline phosphatase activity. It is suggested that Cbfa1 may participate in chondrocyte differentiation. In this study, we have investigated the role of Cbfa1 in chondrocytes during their cytodifferentiation in vitro.Design To investigate the role of Cbfa1 in regulation of chondrocyte differentiation, we over-expressed Cbfa1 or its dominant negative form in cultured chick chondrocytes using a retrovirus (RCAS)system and examined changes in chondrocyte behaviour induced by the introduced genes.Results Mature chondrocytes isolated form the cephalic portion of sterna seemed to express Cbfa1 more prominently than immature chondrocytes isolated from the one-third caudal portion of sterna. Over-expression of Cbfa1 in immature chondrocytes strongly stimulated alkaline phosphatase activity and matrix calcification. In contrast, expression of a dominant negative form of Cbfa1, which lacks the C-terminal PST domain, severely inhibited alkaline phosphatase activity and matrix calcification in mature chondrocytes.Conclusion Taken together with the observation that Cbfa1 transcripts dominantly localized in hypertrophic chondrocytes as well as in osteoblasts, it is suggested that Cbfa1 plays an important role in the progression of chondrocyte maturation
Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion
We present results of a study of neutrino oscillation based on a 766 ton-year
exposure of KamLAND to reactor anti-neutrinos. We observe 258 \nuebar\
candidate events with energies above 3.4 MeV compared to 365.2 events expected
in the absence of neutrino oscillation. Accounting for 17.8 expected background
events, the statistical significance for reactor \nuebar disappearance is
99.998%. The observed energy spectrum disagrees with the expected spectral
shape in the absence of neutrino oscillation at 99.6% significance and prefers
the distortion expected from \nuebar oscillation effects. A two-neutrino
oscillation analysis of the KamLAND data gives \DeltaMSq =
7.9 eV. A global analysis of data from KamLAND
and solar neutrino experiments yields \DeltaMSq =
7.9 eV and \ThetaParam =
0.40, the most precise determination to date.Comment: 5 pages, 4 figures; submitted to Phys.Rev.Letter
First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance
KamLAND has been used to measure the flux of 's from distant
nuclear reactors. In an exposure of 162 tonyr (145.1 days) the ratio of
the number of observed inverse -decay events to the expected number of
events without disappearance is for energies 3.4 MeV. The deficit of events is
inconsistent with the expected rate for standard propagation at
the 99.95% confidence level. In the context of two-flavor neutrino oscillations
with CPT invariance, these results exclude all oscillation solutions but the
`Large Mixing Angle' solution to the solar neutrino problem using reactor
sources.Comment: 6 pages, 6 figure
Hedgehog Signaling in Tumor Cells Facilitates Osteoblast-Enhanced Osteolytic Metastases
The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh) pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon
Measurement of the CP Violation Parameter sin(2phi_1) in B^0_d Meson Decays
We present a measurement of the Standard Model CP violation parameter
sin(2phi_1) based on a 10.5 fb^{-1} data sample collected at the Upsilon(4S)
resonance with the Belle detector at the KEKB asymmetric e+e- collider. One
neutral B meson is reconstructed in the J/psi K_S, psi(2S) K_S, chi_{c1} K_S,
eta_c K_S, J/psi K_L or J/psi pi^0 CP-eigenstate decay channel and the flavor
of the accompanying B meson is identified from its charged particle decay
products. From the asymmetry in the distribution of the time interval between
the two B-meson decay points, we determine sin(2phi_1) = 0.58 +0.32-0.34 (stat)
+0.09-0.10 (syst).Comment: LaTex, 13 pages, 3 figures, submitted to P.R.
Conditional Expression of Wnt4 during Chondrogenesis Leads to Dwarfism in Mice
Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26(floxneoWnt4). Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26(floxneoWnt4); Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26(floxneoWnt4); Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype
- β¦