72 research outputs found

    Mechanisms of Fetal Programming in Hypertension

    Get PDF
    Events that occur in the early fetal environment have been linked to long-term health and lifespan consequences in the adult. Intrauterine growth restriction (IUGR), which may occur as a result of nutrient insufficiency, exposure to hormones, or disruptions in placental structure or function, may induce the fetus to alter its developmental program in order to adapt to the new conditions. IUGR may result in a decrease in the expression of genes that are responsible for nephrogenesis as nutrients are rerouted to the development of more essential organs. Fetal survival under these conditions often results in low birth weight and a deficit in nephron endowment, which are associated with hypertension in adults. Interestingly, male IUGR offspring appear to be more severely affected than females, suggesting that sex hormones may be involved. The processes of fetal programming of hypertension are complex, and we are only beginning to understand the underlying mechanisms

    Comparison of veterinary drugs and veterinary homeopathy: part 1

    Get PDF
    For many years after its invention around 1796, homeopathy was widely used in people and later in animals. Over the intervening period (1796-2016) pharmacology emerged as a science from Materia Medica (medicinal materials) to become the mainstay of veterinary therapeutics. There remains today a much smaller, but significant, use of homeopathy by veterinary surgeons. Homeopathic products are sometimes administered when conventional drug therapies have not succeeded, but are also used as alternatives to scientifically based therapies and licensed products. The principles underlying the veterinary use of drug-based and homeopathic products are polar opposites; this provides the basis for comparison between them. This two-part review compares and contrasts the two treatment forms in respect of history, constituents, methods of preparation, known or postulated mechanisms underlying responses, the legal basis for use and scientific credibility in the 21st century. Part 1 begins with a consideration of why therapeutic products actually work or appear to do so

    An inherited duplication at the gene p21 protein-activated Kinase 7 (PAK7) is a risk factor for psychosis

    Get PDF
    FUNDING Funding for this study was provided by the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z), the Wellcome Trust (072894/Z/03/Z, 090532/Z/09/Z and 075491/Z/04/B), NIMH grants (MH 41953 and MH083094) and Science Foundation Ireland (08/IN.1/B1916). We acknowledge use of the Trinity Biobank sample from the Irish Blood Transfusion Service; the Trinity Centre for High Performance Computing; British 1958 Birth Cohort DNA collection funded by the Medical Research Council (G0000934) and the Wellcome Trust (068545/Z/02) and of the UK National Blood Service controls funded by the Wellcome Trust. Chris Spencer is supported by a Wellcome Trust Career Development Fellowship (097364/Z/11/Z). Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust. ACKNOWLEDGEMENTS The authors sincerely thank all patients who contributed to this study and all staff who facilitated their involvement. We thank W. Bodmer and B. Winney for use of the People of the British Isles DNA collection, which was funded by the Wellcome Trust. We thank Akira Sawa and Koko Ishzuki for advice on the PAK7–DISC1 interaction experiment and Jan Korbel for discussions on mechanism of structural variation.Peer reviewedPublisher PD

    Dopamine D\u3csub\u3e1\u3c/sub\u3e-like receptors regulate the α\u3csub\u3e1A\u3c/sub\u3e-adrenergic receptor in human renal proximal tubule cells and D\u3csub\u3e1\u3c/sub\u3e-like dopamine receptor knockout mice

    No full text
    © 2014 the American Physiological Society. The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D1-like dopamine receptors [dopamine D1 and D5 receptors (D1Rs and D5Rs, respectively)] and the a1A-adrenergic receptor (α1A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na+ transport, i.e., natriuresis (via D1Rs and D5Rs) or antinatriuresis (via α1A-ARs). We tested the hypothesis that the D1R/D5R regulates the α1A-AR. D1-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with ct1A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D1R/D5R agonist fenoldopam resulted in decreased D1R and D5R expression but increased α1A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na+-K+-ATPase from the plasma membrane to the cytosol that was partially reversed by an α1A-AR agonist, which by itself induced Na+-K+-ATPase translocation from the cytosol to the plasma membrane. The a1A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na+-K+-ATPase activity. To determine the interaction among D1Rs, D5Rs, and α1A-ARs in vivo, we used phenylephrine and A610603 to decrease Na+ excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na+ excretion in wild-type mice and its abolition in D1R knockout, D5R knockout, and D1R-D5R double-knockout mice. Our results demonstrate the ability of the D1-like dopamine receptors to regulate the expression and activity of α1A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems
    corecore