47 research outputs found

    The mosquito genome: the post-genomic era opens

    Get PDF

    How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions

    Get PDF
    During the past year, dramatic progress has been achieved in our understanding of Drosophila immune reactions. The completion of the Drosophila genome sequencing project, microarray analysis and the use of genetic screens have led to the identification of several new genes required to combat microbial infection, filling in some important gaps in the understanding of innate immunity. At the same time, this insect was used as a model for the study of host-pathogen interactions. The recent major advances on the mechanisms by which this insect defends itself against intrusion of pathogens are discussed in this review

    An immune-responsive Serpin regulates the melanization cascade in Drosophila

    Get PDF
    In arthropods, the melanization reaction is associated with multiple host defense mechanisms leading to the sequestration and killing of invading microorganisms. Arthropod melanization is controlled by a cascade of serine proteases that ultimately activates the enzyme prophenoloxidase (PPO), which, in turn, catalyzes the synthesis of melanin. Here we report the biochemical and genetic characterization of a Drosophila serine protease inhibitor protein, Serpin-27A, which regulates the melanization cascade through the specific inhibition of the terminal protease prophenoloxidase-activating enzyme. Our data demonstrate that Serpin-27A is required to restrict the phenoloxidase activity to the site of injury or infection, preventing the insect from excessive melanization

    Src Kinases Are Required for a Balanced Production of IL-12/IL-23 in Human Dendritic Cells Activated by Toll-Like Receptor Agonists

    Get PDF
    BACKGROUND: Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation. It was previously shown by our group that Src kinases play a key role in cytokines production during TLR4 activation in human DC. PRINCIPAL FINDINGS: In this work we investigated the role of Src kinases during different TLRs triggering in human monocyte-derived DC (MoDC). We found that Src family kinases are important for a balanced production of inflammatory cytokines by human MoDC upon stimulation of TLR3 and 8 with their respective agonists. Disruption of this equilibrium through pharmacological inhibition of Src kinases alters the DC maturation pattern. In particular, while expression of IL-12 and other inflammatory cytokines depend on Src kinases, the induction of IL-23 and co-stimulatory molecules do not. Accordingly, DC treated with Src inhibitors are not compromised in their ability to induce CD4 T cell proliferation and to promote the Th17 subset survival but are less efficient in inducing Th1 differentiation. CONCLUSIONS: We suggest that the pharmacological modulation of DC maturation has the potential to shape the quality of the adaptive immune response and could be exploited for the treatment of inflammation-related diseases

    Vaccines for the 21st century

    No full text
    Abstract In the last century, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases. It is believed that vaccines save at least 2–3 million lives per year worldwide. Smallpox has been eradicated and polio has almost disappeared worldwide through global vaccine campaigns. Most of the viral and bacterial infections that traditionally affected children have been drastically reduced thanks to national immunization programs in developed countries. However, many diseases are not yet preventable by vaccination, and vaccines have not been fully exploited for target populations such as elderly and pregnant women. This review focuses on the state of the art of recent clinical trials of vaccines for major unmet medical needs such as HIV, malaria, TB, and cancer. In addition, we describe the innovative technologies currently used in vaccine research and development including adjuvants, vectors, nucleic acid vaccines, and structure‐based antigen design. The hope is that thanks to these technologies, more diseases will be addressed in the 21st century by novel preventative and therapeutic vaccines

    Vaccine Adjuvants: Mode of Action

    No full text

    On the mechanisms of conjugate vaccines

    No full text

    The Toll and Imd pathways are the major regulators of the immune response in Drosophila

    Get PDF
    Microarray studies have shown recently that microbial infection leads to extensive changes in the Drosophila gene expression programme. However, little is known about the control of most of the fly immune-responsive genes, except for the antimicrobial peptide (AMP)-encoding genes, which are regulated by the Toll and Imd pathways. Here, we used oligonucleotide microarrays to monitor the effect of mutations affecting the Toll and Imd pathways on the expression programme induced by septic injury in Drosophila adults. We found that the Toll and Imd cascades control the majority of the genes regulated by microbial infection in addition to AMP genes and are involved in nearly all known Drosophila innate immune reactions. However, we identified some genes controlled by septic injury that are not affected in double mutant flies where both Toll and Imd pathways are defective, suggesting that other unidentified signalling cascades are activated by infection. Interestingly, we observed that some Drosophila immune-responsive genes are located in gene clusters, which often are transcriptionally co-regulated

    Vaccines for the 21st century

    No full text
    In the last century, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases. It is believed that vaccines save at least 2–3 million lives per year worldwide. Smallpox has been eradicated and polio has almost disappeared worldwide through global vaccine campaigns. Most of the viral and bacterial infections that traditionally affected children have been drastically reduced thanks to national immunization programs in developed countries. However, many diseases are not yet preventable by vaccination, and vaccines have not been fully exploited for target populations such as elderly and pregnant women. This review focuses on the state of the art of recent clinical trials of vaccines for major unmet medical needs such as HIV, malaria, TB, and cancer. In addition, we describe the innovative technologies currently used in vaccine research and development including adjuvants, vectors, nucleic acid vaccines, and structure-based antigen design. The hope is that thanks to these technologies, more diseases will be addressed in the 21st century by novel preventative and therapeutic vaccines

    SELF-CLEAVING MOTIFS ARE FOUND IN CLOSE PROXIMITY TO THE SITES UTILIZED FOR U16 SNORNA PROCESSING

    No full text
    A class of small nucleolar RNAs (snoRNAs) is encoded in introns of protein-coding genes. The U16 snoRNA belongs to this class; it is encoded in the third intron of the Xenopus laevis (Xl) L1 ribosomal protein encoding gene and is released from the pre-mRNA by processing both in vivo and in vitro systems. In this paper, we show that in close proximity to the U16 snoRNA processing sites, sequences displaying self-cleaving activity are present. These elements are conserved in the two copies of the Xl L1 and in the single copy of the X. tropicalis L1. The catalytic activity corresponds to that already described for the minimal hairpin ribozyme [Dange et al., Science 242 (1990) 585-588]; it is Mn2+-dependent, produces 2'-3' cyclic phosphate and 5'-OH termini and comprises an essential GAAA element. Here we show that the 2'-OH group of the G residue is essential for catalysis
    corecore