22 research outputs found

    Safety, pharmacokinetics, and pharmacodynamics of escalating repeat doses of GSK249320 in patients with stroke.

    Get PDF
    Background and purposeRestorative therapies have the potential to improve function and reduce disability after stroke with a wide therapeutic window. The current study evaluated GSK249320, a monoclonal antibody that blocks the axon outgrowth inhibition molecule myelin-associated glycoprotein and also protects oligodendrocytes.MethodsPatients with mild-moderate stroke were randomized to intravenous GSK249320 (1, 5, or 15 mg/kg per infusion, in escalating cohorts of 8-9 subjects) versus placebo (n=17). Infusion 1 was 24 to 72 hours after stroke; infusion 2 was 9 ± 1 days later. The primary objective evaluated safety and tolerability, and the secondary objectives evaluated immunogenicity, pharmacokinetics, biomarkers, neurophysiology, and motor function.ResultsBaseline (n=42) characteristics were similar across treatment groups. No safety concerns were found based on adverse events, examination, vital signs, ECG, nerve conduction tests, brain imaging, motor function testing, and laboratory studies. Two of the 25 subjects dosed with GSK249320 developed transient antidrug antibodies after infusion 1. The pharmacokinetics profile was as expected for an IgG1 type monoclonal antibody. Serum levels of the biomarker S100β did not differ between groups. Global outcome measures were similar across groups. Modality-specific end points could be consistently measured in the first few days after stroke, and one of these, gait velocity, demonstrated a trend toward improvement with GSK249320 compared with placebo.ConclusionsGSK249320 was generally well tolerated. No major safety issues were identified in this first study of a monoclonal antibody to modulate the neurobiology of brain repair after stroke. Future studies might explore the efficacy of GSK249320 as a restorative therapy for stroke. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique Identifier: NCT00833989

    Predictors and biomarkers of treatment gains in a clinical stroke trial targeting the lower extremity.

    No full text
    Background and purposeBehavioral measures are often used to distinguish subgroups of patients with stroke (eg, to predict treatment gains, stratify clinical trial enrollees, or select rehabilitation therapy). In studies of the upper extremity, measures of brain function using functional magnetic resonance imaging (fMRI) have also been found useful, but this approach has not been examined for the lower extremity. The current study hypothesized that an fMRI-based measure of cortical function would significantly improve prediction of treatment-induced lower extremity behavioral gains. Biomarkers of treatment gains were also explored.MethodsPatients with hemiparesis 1 to 12 months after stroke were enrolled in a double-blind, placebo-controlled, randomized clinical trial of ropinirole+physical therapy versus placebo+physical therapy, results of which have previously been reported (NCT00221390).(15) Primary end point was change in gait velocity. Enrollees underwent baseline multimodal assessment that included 19 measures spanning 5 assessment categories (medical history, impairment, disability, brain injury, and brain function), and also underwent reassessment 3 weeks after end of therapy.ResultsIn bivariate analysis, 8 baseline measures belonging to 4 categories (medical history, impairment, disability, and brain function) significantly predicted change in gait velocity. Prediction was strongest, however, using a multivariate model containing 2 measures (leg Fugl-Meyer score and fMRI activation volume within ipsilesional foot sensorimotor cortex). Increased activation volume within bilateral foot primary sensorimotor cortex correlated positively with treatment-induced leg motor gains.ConclusionsA multimodal model incorporating behavioral and fMRI measures best predicted treatment-induced changes in gait velocity in a clinical trial setting. Results also suggest potential use of fMRI measures as biomarkers of treatment gains

    Proof-of-Concept Randomized Trial of the Monoclonal Antibody GSK249320 Versus Placebo in Stroke Patients

    No full text
    BACKGROUND AND PURPOSE—: One class of poststroke restorative therapy focuses on promoting axon outgrowth by blocking myelin-based inhibitory proteins such as myelin-associated glycoprotein. The purpose of the current study was to extend preclinical and clinical findings of GSK249320, a humanized monoclonal antibody to myelin-associated glycoprotein with disabled Fc region, to explore effects on motor outcomes poststroke. METHODS—: In this phase IIb double-blind, randomized, placebo-controlled study, patients at 30 centers with ischemic stroke 24 to 72 hours prior and gait deficits were randomized to 2 IV infusions of GSK249320 or placebo. Primary outcome measure was change in gait velocity from baseline to day 90. RESULTS—: A total of 134 subjects were randomized between May 2013 and July 2014. The 2 groups were overall well matched at baseline. The study was stopped at the prespecified interim analysis because the treatment difference met the predefined futility criteria cutoff; change in gait velocity to day 90 was 0.55±0.46 (mean±SD) in the GSK249320 group and 0.56±0.50 for placebo. Secondary end points including upper extremity function were concordant. The 2 IV infusions of GSK249320 were well tolerated. No neutralizing antibodies to GSK249320 were detected. CONCLUSIONS—: GSK249320, within 72 hours of stroke, demonstrated no improvement on gait velocity compared with placebo. Possible reasons include challenges translating findings into humans and no direct evidence that the therapy reached the biological target. The antibody was well tolerated and showed low immunogenicity, findings potentially useful to future studies aiming to use a monoclonal antibody to modify activity in specific biological pathways to improve recovery from stroke. CLINICAL TRIAL REGISTRATION—: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01808261
    corecore