11 research outputs found

    Antithrombin attenuates myocardial dysfunction and reverses systemic fluid accumulation following burn and smoke inhalation injury: a randomized, controlled, experimental study

    Full text link
    Introduction: We hypothesized that maintaining physiological plasma levels of antithrombin attenuates myocardial dysfunction and inflammation as well as vascular leakage associated with burn and smoke inhalation injury. Therefore, the present prospective, randomized experiment was conducted using an established ovine model. Methods: Following 40% of total body surface area, third degree flame burn and 4 × 12 breaths of cold cotton smoke, chronically instrumented sheep were randomly assigned to receive an intravenous infusion of 6 IU/kg/h recombinant human antithrombin (rhAT) or normal saline (control group; n = 6 each). In addition, six sheep were designated as sham animals (not injured, continuous infusion of vehicle). During the 48 h study period the animals were awake, mechanically ventilated and fluid resuscitated according to standard formulas. Results: Compared to the sham group, myocardial contractility was severely impaired in control animals, as suggested by lower stroke volume and left ventricular stroke work indexes. As a compensatory mechanism, heart rate increased, thereby increasing myocardial oxygen consumption. In parallel, myocardial inflammation was induced via nitric oxide production, neutrophil accumulation (myeloperoxidase activity) and activation of the p38-mitogen-activated protein kinase pathway resulting in cytokine release (tumor necrosis factor-alpha, interleukin-6) in control vs. sham animals. rhAT-treatment significantly attenuated these inflammatory changes leading to a myocardial contractility and myocardial oxygen consumption comparable to sham animals. In control animals, systemic fluid accumulation progressively increased over time resulting in a cumulative positive fluid balance of about 4,000 ml at the end of the study period. Contrarily, in rhAT-treated animals there was only an initial fluid accumulation until 24 h that was reversed back to the level of sham animals during the second day. Conclusions: Based on these findings, the supplementation of rhAT may represent a valuable therapeutic approach for cardiovascular dysfunction and inflammation after burn and smoke inhalation injury.<br

    Simulating Surgical Skills in Animals: Systematic Review, Costs & Acceptance Analyses

    Get PDF
    Background:Modern surgery demands high-quality and reproducibility. Due to new working directives, resident duty hours have been restricted and evidence exists that pure on-the-job training provides insufficient exposure. We hypothesize that supplemental simulations in animal models provide a realistic training to augment clinical experiences. This study reviews surgical training models, their costs and survey results illustrating academic acceptance. Methods:Animal models were identified by literature research. Costs were analyzed from multiple German and Austrian training programs. A survey on their acceptance was conducted among faculty and medical students. Results:915 articles were analyzed, thereof 91 studies describedin-vivoanimal training models, predominantly for laparoscopy (30%) and microsurgery (24%). Cost-analysis revealed single-training costs between 307euro and 5,861euro depending on model and discipline. Survey results illustrated that 69% of the participants had no experience, but 66% would attend training under experienced supervision. Perceived public acceptance was rated intermediate by medical staff and students (4.26;1-low, 10 high). Conclusion:Training in animals is well-established and was rated worth attending in a majority of a representative cohort to acquire key surgical skills, in light of reduced clinical exposure. Animal models may therefore supplement the training of tomorrow's surgeons to overcome limited hands-on experience until virtual simulations can provide such educational tools

    Lack of durable protection against cotton smoke-induced acute lung injury in sheep by nebulized single chain urokinase plasminogen activator or tissue plasminogen activator

    No full text
    Abstract Background Airway fibrin casts are clinically important complications of severe inhalational smoke-induced acute lung injury (ISIALI) for which reliable evidence-based therapy is lacking. Nebulized anticoagulants or a tissue plasminogen activator; tPA, has been advocated, but airway bleeding is a known and lethal potential complication. We posited that nebulized delivery of single chain urokinase plasminogen activator, scuPA, is well-tolerated and improves physiologic outcomes in ISIALI. To test this hypothesis, we nebulized scuPA or tPA and delivered these agents every 4 h to sheep with cotton smoke induced ISIALI that were ventilated by either adaptive pressure ventilation/controlled mandatory ventilation (APVcmv; Group 1, n = 14) or synchronized controlled mandatory ventilation (SCMV)/limited suctioning; Group 2, n = 32). Physiologic readouts of acute lung injury included arterial blood gas analyses, PaO2/FiO2 ratios, peak and plateau airway pressures, lung resistance and static lung compliance. Lung injury was further assessed by histologic scoring. Biochemical analyses included determination of antigenic and enzymographic uPA and tPA levels, plasminogen activator and plasminogen activator inhibitor-1 activities and d-dimer in bronchoalveolar lavage (BAL). Plasma levels of uPA, tPA antigens, d-dimers and α-macroglobulin-uPA complex levels were also assessed. Results In Group 1, tPA at the 2 mg dose was ineffective, but at 4 mg tPA or scuPA, the PaO2/FiO2 ratios, peak/plateau pressures improved during evolving injury (p < 0.01) without significant differences at 48 h. To improve delivery of the interventions, the experiments were repeated in Group 2 with limited suctioning/SCMV, which generally increased PAs in (BAL). In Group 2, tPA was ineffective, but scuPA (4 or 8 mg) improved physiologic outcomes (p < 0.01) and plateau pressures remained lower at 48 h. Airway bleeding occurred at 8 mg tPA. BAL plasminogen activator (PA) levels positively correlated with physiologic outcomes at 48 h. Conclusions Physiologic outcomes improved in sheep in which better delivery of the PAs occurred. The benefits of nebulized scuPA were achieved without airway bleeding associated with tPA, but were transient and largely abrogated at 48 h, in part attributable to the progression and severity of ISIALI

    Ceftazidime improves hemodynamics and oxygenation in ovine smoke inhalation injury and septic shock

    No full text
    OBJECTIVE: To investigate ceftazidime in acute lung injury (ALI) and sepsis. DESIGN AND SETTING: Prospective, randomized, controlled animal study in an investigational ICU at a university hospital. INTERVENTIONS: Eighteen female Merino sheep were prepared for chronic study and subjected to smoke inhalation and septic challenge according to an established protocol. MEASUREMENTS AND RESULTS: Whereas global hemodynamics and oxygenation remained stable in sham animals (no injury, no treatment), the injury contributed to a hypotensive-hyperdynamic circulation in the control group (smoke inhalation and sepsis, no treatment), as indicated by a significant increase in cardiac index) and heart rate and a drop in mean arterial pressure. Treatment with ceftazidime (smoke inhalation and sepsis, treatment group) stabilized cardiac index and heart rate and attenuated the decrease in mean arterial pressure. The deterioration in PaO2/FiO2 ratio and pulmonary shunt fraction (Qs/Qt) was significantly delayed and blunted by ceftazidime. At 24 h after injury a significant increase in airway obstruction scores of bronchi and bronchioles in both injured groups was observed. Ceftazidime significantly reduced airway obstruction vs. control animals. Whereas plasma nitrate/nitrite levels increased similarly in the two injured groups, lung 3-nitrotyrosine content remained at the baseline level in the ceftazidime group. CONCLUSIONS: In ovine lung injury ceftazidime improves global hemodynamics and oxygenation not only by bacterial clearance but also via reduction in toxic nitrogen species such as 3-nitrotyrosine. Therefore ceftazidime appears as a clinically relevant adjunct in the common setting of sepsis-associated lung injury

    Ventilation practices in burn patients - an international prospective observational cohort study

    No full text
    Background: It is unknown whether lung-protective ventilation is applied in burn patients and whether they benefit from it. This study aimed to determine ventilation practices in burn intensive care units (ICUs) and investigate the association between lung-protective ventilation and the number of ventilator-free days and alive at day 28 (VFD-28). Methods: This is an international prospective observational cohort study including adult burn patients requiring mechanical ventilation. Low tidal volume (V T) was defined as V T ≤ 8 mL/kg predicted body weight (PBW). Levels of positive end-expiratory pressure (PEEP) and maximum airway pressures were collected. The association between V T and VFD-28 was analyzed using a competing risk model. Ventilation settings were presented for all patients, focusing on the first day of ventilation. We also compared ventilation settings between patients with and without inhalation trauma. Results: A total of 160 patients from 28 ICUs in 16 countries were included. Low V T was used in 74% of patients, median V T size was 7.3 [interquartile range (IQR) 6.2-8.3] mL/kg PBW and did not differ between patients with and without inhalation trauma (p = 0.58). Median VFD-28 was 17 (IQR 0-26), without a difference between ventilation with low or high V T (p = 0.98). All patients were ventilated with PEEP levels ≥5 cmH2O; 80% of patients had maximum airway pressures <30 cmH2O. Conclusion: In this international cohort study we found that lung-protective ventilation is used in the majority of burn patients, irrespective of the presence of inhalation trauma. Use of low V T was not associated with a reduction in VFD-28. Trial registration: Clinicaltrials.gov NCT02312869. Date of registration: 9 December 2014
    corecore