681 research outputs found

    On experimental procedures for entanglement verification

    Get PDF
    We give an overview of different types of entanglement that can be generated in experiments, as well as of various protocols that can be used to verify or quantify entanglement. We propose several criteria that, we argue, should be applied to experimental entanglement verification procedures. Explicit examples demonstrate that not following these criteria will tend to result in overestimating the amount of entanglement generated in an experiment or in infering entanglement when there is none. We distinguish protocols meant to refute or eliminate hidden-variable models from those meant to verify entanglement.Comment: 15 page

    Decoherence and the conditions for the classical control of quantum systems

    Full text link
    We find the conditions for one quantum system to function as a classical controller of another quantum system: the controller must be an open system and rapidly diagonalised in the basis of the controller variable that is coupled to the controlled system. This causes decoherence in the controlled system that can be made small if the rate of diagonalisation is fast. We give a detailed example based on the quantum optomechanical control of a mechanical resonator. The resulting equations are similar in structure to recently proposed models for consistently combining quantum and classical stochastic dynamics

    Entanglement of internal and external angular momenta of a single atom

    Full text link
    We consider the exchange of spin and orbital angular momenta between a circularly polarized Laguerre-Gaussian beam of light and a single atom trapped in a two-dimensional harmonic potential. The radiation field is treated classically but the atomic center-of-mass motion is quantized. The spin and orbital angular momenta of the field are individually conserved upon absorption, and this results in the entanglement of the internal and external degrees of freedom of the atom. We suggest applications of this entanglement in quantum information processing.Comment: 4 pages, 2 figure

    Photons in polychromatic rotating modes

    Get PDF
    We propose a quantum theory of rotating light beams and study some of its properties. Such beams are polychromatic and have either a slowly rotating polarization or a slowly rotating transverse mode pattern. We show there are, for both cases, three different natural types of modes that qualify as rotating, one of which is a new type not previously considered. We discuss differences between these three types of rotating modes on the one hand and non-rotating modes as viewed from a rotating frame of reference on the other. We present various examples illustrating the possible use of rotating photons, mostly for quantum information processing purposes. We introduce in this context a rotating version of the two-photon singlet state.Comment: enormously expanded: 12 pages, 3 figures; a new, more informative, but less elegant title, especially designed for Phys. Rev.

    The Effect of Stochastic Noise on Quantum State Transfer

    Full text link
    We consider the effect of classical stochastic noise on control laser pulses used in a scheme for transferring quantum information between atoms, or quantum dots, in separate optical cavities via an optical connection between cavities. We develop a master equation for the dynamics of the system subject to stochastic errors in the laser pulses, and use this to evaluate the sensitivity of the transfer process to stochastic pulse shape errors for a number of different pulse shapes. We show that under certain conditions, the sensitivity of the transfer to the noise depends on the pulse shape, and develop a method for determining a pulse shape that is minimally sensitive to specific errors.Comment: 10 pages, 9 figures, to appear in Physical Review

    Error free quantum communication through noisy channels

    Get PDF
    We suggest a method to perform a quantum logic gate between distant qubits by off-resonant field-atom dispersive interactions. The scheme we present is shown to work ideally even in the presence of errors in the photon channels used for communication. The stability against errors arises from the paradoxical situation that the transmitted photons carry no information about the state of the qubits. In contrast to a previous proposal for ideal communication [Phys. Rev. Lett. 78, 4293 (1997)] our proposal only involves single atoms in the sending and receiving devices.Comment: 6 pages, including 2 figure

    The power of random measurements: measuring Tr(\rho^n) on single copies of \rho

    Get PDF
    While it is known that Tr(\rho^n) can be measured directly (i.e., without first reconstructing the density matrix) by performing joint measurements on n copies of the same state rho, it is shown here that random measurements on single copies suffice, too. Averaging over the random measurements directly yields estimates of Tr(\rho^n), even when it is not known what measurements were actually performed (so that one cannot reconstruct \rho)

    The cryptographic power of misaligned reference frames

    Full text link
    Suppose that Alice and Bob define their coordinate axes differently, and the change of reference frame between them is given by a probability distribution mu over SO(3). We show that this uncertainty of reference frame is of no use for bit commitment when mu is uniformly distributed over a (sub)group of SO(3), but other choices of mu can give rise to a partially or even asymptotically secure bit commitment.Comment: 4 pages Latex; v2 has a new referenc
    • …
    corecore