101 research outputs found

    Phase Transitions in Neutron Stars and Maximum Masses

    Get PDF
    Using the most recent realistic effective interactions for nuclear matter with a smooth extrapolation to high densities including causality, we constrain the equation of state and calculate maximum masses of rotating neutron stars. First and second order phase transitions to, e.g., quark matter at high densities are included. If neutron star masses of ∌2.3M⊙\sim 2.3M_\odot from quasi-periodic oscillations in low mass X-ray binaries are confirmed, a soft equation of state as well as strong phase transitions can be excluded in neutron star cores.Comment: Replaced with revised version, 7 pages, 3 figs. To appear in Ap. J. Let

    3P_2-3F_2 pairing in neutron matter with modern nucleon-nucleon potentials

    Get PDF
    We present results for the 3P2−3F2^3P_2 - ^3F_2 pairing gap in neutron matter with several realistic nucleon-nucleon potentials, in particular with recent, phase-shift equivalent potentials. We find that their predictions for the gap cannot be trusted at densities above ρ≈1.7ρ0\rho\approx 1.7\rho_0, where ρ0\rho_0 is the saturation density for symmetric nuclear matter. In order to make predictions above that density, potential models which fit the nucleon-nucleon phase shifts up to about 1 GeV are required.Comment: Revtex style, 19 pages, 6 figures inlude

    Hyperon effects on the properties of ÎČ\beta-stable neutron star matter

    Full text link
    We present results from Brueckner-Hartree-Fock calculations for ÎČ\beta-stable neutron star matter with nucleonic and hyperonic degrees of freedom employing the most recent parametrizations of the baryon-baryon interaction of the Nijmegen group. Only Σ−\Sigma^- and Λ\Lambda are present up to densities ∌7ρ0\sim 7\rho_0. The corresponding equations of state are then used to compute properties of neutron stars such as masses and radii.Comment: 4 pages, contributed talk at HYP2000, Torino, 23-27 Oct. 200

    Modern nucleon-nucleon potentials and symmetry energy in infinite matter

    Get PDF
    We study the symmetry energy in infinite nuclear matter employing a non-relativistic Brueckner-Hartree-Fock approach and using various new nucleon-nucleon (NN) potentials, which fit np and pp scattering data very accurately. The potential models we employ are the recent versions of the Nijmegen group, Nijm-I, Nijm-II and Reid93, the Argonne V18V_{18} potential and the CD-Bonn potential. All these potentials yield a symmetry energy which increases with density, resolving a discrepancy that existed for older NN potentials. The origin of remaining differences is discussed.Comment: 17 pages, 10 figures included, elsevier latex style epsart.st

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include

    Phaseshift equivalent NN potentials and the deuteron

    Get PDF
    Different modern phase shift equivalent NN potentials are tested by evaluating the partial wave decomposition of the kinetic and potential energy of the deuteron. Significant differences are found, which are traced back to the matrix elements of the potentials at medium and large momenta. The influence of the localisation of the one-pion-exchange contribution to these potentials is analyzed in detail.Comment: 11 pages, LaTeX, 4 figures include

    Single particle spectrum and binding energy of nuclear matter

    Get PDF
    In non-relativistic Brueckner calculations of nuclear matter, the self-consistent single particle potential is strongly momentum dependent. To simplify the calculations, a parabolic approximation is often used in the literature. The variation in the binding energy value introduced by the parabolic approximation is quantitatively analyzed in detail. It is found that the approximation can introduce an uncertainty of 1-2 MeV near the saturation density.Comment: 6 Latex pages, 3 postscript figure
    • 

    corecore