5,764 research outputs found

    Genetic and serological heterogeneity of the supertypic HLA-B locus specificities Bw4 and Bw6

    Get PDF
    Gene cloning and sequencing of the HLA-B locus split antigens B38 (B16.1) and B39 (B16.2) allowed localization of their subtypic as well as their public specificities HLA-Bw4 or -Bw6 to the c~-helical region of the c~ 1 domain flanked by the amino acid positions 74-83. Comparison of their amino acid sequences with those of other HLA-B-locus alleles established HLA-Bw6 to be distinguished by Ser at residue 77 and Asn at residue 80. In contrast, HLA-Bw4 is characterized by at least seven different patterns of amino acid exchanges at positions 77 and 80-83. Reactivity patterns of Bw4- or Bw6-specific monoclonal antibodies reveal two alloantigenic epitopes contributing to the HLA-Bw4 or -Bw6 specificity residing next to the region of highest diversity of the cr domain

    Cold inelastic collisions between lithium and cesium in a two-species magneto-optical trap

    Get PDF
    We investigate collisional properties of lithium and cesium which are simultaneously confined in a combined magneto-optical trap. Trap-loss collisions between the two species are comprehensively studied. Different inelastic collision channels are identified, and inter-species rate coefficients as well as cross sections are determined. It is found that loss rates are independent of the optical excitation of Li, as a consequence of the repulsive Li^*-Cs interaction. Li and Cs loss by inelastic inter-species collisions can completely be attributed to processes involving optically excited cesium (fine-structure changing collisions and radiative escape). By lowering the trap depth for Li, an additional loss channel of Li is observed which results from ground-state Li-Cs collisions changing the hyperfine state of cesium.Comment: submitted to Euro. Phys. J. D, special issue on Laser Cooling and Trappin

    Liquid Scintillator Time Projection Chamber Concept

    Full text link
    Results are presented from a small-scale experiment to investigate the use of room temperature organic liquid scintillators as the active medium for a time projection chamber (TPC). The optical properties of liquid scintillators have long been known, but their ability to transport charge has remained, until now, largely untested. The idea of using room temperature liquids as an active medium for an ionisation chamber was first presented in \cite{EnglerTMS}. Since then the range of liquid scintillators available has been greatly developed. We present successful transport of ionization charges in a selection of both, pure organic liquid solvents and liquid scintillator cocktails over 20\,mm using a variety of electric drift field strengths. The target of this research is to offer a cost effective alternative to liquid noble gas detectors in neutrino physics.Comment: 6 pages, 5 figures, submitted to Proceedings 12th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, Ital

    Testing the proposed link between cosmic rays and cloud cover

    Full text link
    A decrease in the globally averaged low level cloud cover, deduced from the ISCCP infra red data, as the cosmic ray intensity decreased during the solar cycle 22 was observed by two groups. The groups went on to hypothesise that the decrease in ionization due to cosmic rays causes the decrease in cloud cover, thereby explaining a large part of the presently observed global warming. We have examined this hypothesis to look for evidence to corroborate it. None has been found and so our conclusions are to doubt it. From the absence of corroborative evidence, we estimate that less than 23%, at the 95% confidence level, of the 11-year cycle change in the globally averaged cloud cover observed in solar cycle 22 is due to the change in the rate of ionization from the solar modulation of cosmic rays

    Distortions of Experimental Muon Arrival Time Distributions of Extensive Air Showers by the Observation Conditions

    Get PDF
    Event-by-event measured arrival time distributions of Extensive Air Shower (EAS) muons are affected and distorted by various interrelated effects which originate from the time resolution of the timing detectors, from fluctuations of the reference time and the number (multiplicity) of detected muons spanning the arrival time distribution of the individual EAS events. The origin of these effects is discussed, and different correction procedures, which involve detailed simulations, are proposed and illustrated. The discussed distortions are relevant for relatively small observation distances (R < 200 m) from the EAS core. Their significance decreases with increasing observation distance and increasing primary energies. Local arrival time distributions which refer to the observed arrival time of the first local muon prove to be less sensitive to the mass of the primary. This feature points to the necessity of arrival time measurements with additional information on the curvature of the EAS disk.Comment: 10 pages, 6 figures, accepted for publication in Astroparticle Physic

    Strong anisotropy in surface kinetic roughening: analysis and experiments

    Full text link
    We report an experimental assessment of surface kinetic roughening properties that are anisotropic in space. Working for two specific instances of silicon surfaces irradiated by ion-beam sputtering under diverse conditions (with and without concurrent metallic impurity codeposition), we verify the predictions and consistency of a recently proposed scaling Ansatz for surface observables like the two-dimensional (2D) height Power Spectral Density (PSD). In contrast with other formulations, this Ansatz is naturally tailored to the study of two-dimensional surfaces, and allows to readily explore the implications of anisotropic scaling for other observables, such as real-space correlation functions and PSD functions for 1D profiles of the surface. Our results confirm that there are indeed actual experimental systems whose kinetic roughening is strongly anisotropic, as consistently described by this scaling analysis. In the light of our work, some types of experimental measurements are seen to be more affected by issues like finite space resolution effects, etc. that may hinder a clear-cut assessment of strongly anisotropic scaling in the present and other practical contexts

    Diffractive triangulation of radiative point sources

    Get PDF
    We describe a general method to determine the location of a point source of waves relative to a twodimensional single-crystalline active pixel detector. Based on the inherent structural sensitivity of crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the location of a wave emitter. The principle described here can be applied to various types of waves, provided that the detector elements are suitably structured. As a prototypical practical application of the general detection principle, a digital hybrid pixel detector is used to localize a source of electrons for Kikuchi diffraction pattern measurements in the scanning electron microscope. This approach provides a promising alternative method to calibrate Kikuchi patterns for accurate measurements of microstructural crystal orientations, strains, and phase distributions

    Dissecting the knee - Air shower measurements with KASCADE

    Full text link
    Recent results of the KASCADE air shower experiment are presented in order to shed some light on the astrophysics of cosmic rays in the region of the knee in the energy spectrum. The results include investigations of high-energy interactions in the atmosphere, the analysis of the arrival directions of cosmic rays, the determination of the mean logarithmic mass, and the unfolding of energy spectra for elemental groups

    Cooling atoms in an optical trap by selective parametric excitation

    Get PDF
    We demonstrate the possibility of energy-selective removal of cold atoms from a tight optical trap by means of parametric excitation of the trap vibrational modes. Taking advantage of the anharmonicity of the trap potential, we selectively remove the most energetic trapped atoms or excite those at the bottom of the trap by tuning the parametric modulation frequency. This process, which had been previously identified as a possible source of heating, also appears to be a robust way for forcing evaporative cooling in anharmonic traps.Comment: 5 pages, 5 figure

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 μ\muK to 10 μ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure
    corecore