39 research outputs found

    Regulation and localisation of PSP proteins in E-Coli

    No full text
    The phage shock protein (Psp) response is found in many Gram-negative enterobacteria, where it helps to maintain the proton motive force (PMF) when the integrity of the inner membrane (IM) is impaired and promotes virulence of pathogens such as Yersinia or Salmonella. In Escherichia coli, Psp comprises seven genes (pspF pspABCDE and pspG) which are organised in a regulon under the control of two Sigma54-dependent promoters. Despite considerable advances, neither the mechanism of Psp induction nor the functioning of the Psp response is fully understood. Recent findings comparing the roles of ArcB in Yersinia enterocolitica and E. coli caused a dispute over the requirement of the twocomponent system ArcAB in Psp signal-transduction. The present study now establishes that ArcAB involvement is conditional and appears to be mediated via protein-protein interactions between ArcB and PspB. The study further suggests that the cellular ubiquinone pool, which acts upstream of ArcAB, may also play a role in Psp signalling whereas dissipation of proton motive force (PMF), generally inferred to be the inducing signal, is not sufficient to mount a Psp response. To gain further insight into its functioning, PspA (a negative regulator and effector of Psp) and PspG (an effector of Psp) were visualised in vivo using fusions to Green fluorescent protein (GFP). To maintain PMF, PspA was proposed to uniformly cover the cytoplasmic face of the IM. However, the present study demonstrates that PspA (and PspG) is highly organised into distinct complexes at the cell pole and the lateral cell membrane. Real-time observations revealed lateral PspA and PspG complexes are highly mobile, but absent in cells lacking MreB. Without the MreB cytoskeleton, induction of the Psp response is still observed, yet these cells fail to maintain PMF under stress conditions

    Effect of food-related stress conditions and loss of agr and sigB on seb promoter activity in S. aureus

    Full text link
    Staphylococcal enterotoxin B (SEB) causes staphylococcal food poisoning and is produced in up to ten times higher quantities than other major enterotoxins. While Staphylococcus aureus growth is often repressed by competing flora, the organism exhibits a decisive growth advantage under some stress conditions. So far, data on the influence of food-related stressors and regulatory mutations on seb expression is limited and largely based on laboratory strains, which were later reported to harbor mutations. Therefore, the aim of this study was to investigate the influence of stress and regulatory mutations on seb promoter activity. To this end, transcriptional fusions were created in two strains, USA300 and HG003, carrying different seb upstream sequences fused to a blaZ reporter. NaCl, nitrite, and glucose stress led to significantly decreased seb promoter activity, while lactic acid stress resulted in significantly increased seb promoter activity. Loss of agr decreased seb promoter activity and loss of sigB increased promoter activity, with the magnitude of change depending on the strain. These results demonstrate that mild stress conditions encountered during food production and preservation can induce significant changes in seb promoter activity

    The route to transcription initiation determines the mode of transcriptional bursting in E. coli

    Get PDF
    Transcription is fundamentally noisy, leading to significant heterogeneity across bacterial populations. Noise is often attributed to burstiness, but the underlying mechanisms and their dependence on the mode of promotor regulation remain unclear. Here, we measure E. coli single cell mRNA levels for two stress responses that depend on bacterial sigma factors with different mode of transcription initiation (sigma (70) and sigma (54)). By fitting a stochastic model to the observed mRNA distributions, we show that the transition from low to high expression of the sigma (70)-controlled stress response is regulated via the burst size, while that of the sigma (54)-controlled stress response is regulated via the burst frequency. Therefore, transcription initiation involving sigma (54) differs from other bacterial systems, and yields bursting kinetics characteristic of eukaryotic systems. Transcription noise in bacteria is often attributed to burstiness, but the mechanisms are unclear. Here, the authors show that the transition from low to high expression can be regulated via burst size or burst frequency, depending on the mode of transcription initiation determined by different sigma factors

    Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells

    Get PDF
    Bacterial enhancer-dependent transcription systems support major adaptive responses and offer a singular paradigm in gene control analogous to complex eukaryotic systems. Here we report new mechanistic insights into the control of one-membrane stress-responsive bacterial enhancer-dependent system. Using millisecond single-molecule fluorescence microscopy of live cells we determine the localizations, two-dimensional diffusion dynamics and stoichiometries of complexes of the bacterial enhancer-binding ATPase PspF during its action at promoters as regulated by inner membrane interacting negative controller PspA. We establish that a stable repressive PspF-PspA complex is located in the nucleoid, transiently communicating with the inner membrane via PspA. The PspF as a hexamer stably binds only one of the two psp promoters at a time, suggesting that psp promoters will fire asynchronously and cooperative interactions of PspF with the basal transcription complex influence dynamics of the PspF hexamer-DNA complex and regulation of the psp promoters

    Bariatric surgery prevents carotid wall thickness progression.

    Get PDF
    BACKGROUND Bariatric surgery is a treatment option for patients with severe obesity and improves parameters of cardiovascular and/or metabolic disease. Carotid intima media thickness (C-IMT) is a surrogate measure of subclinical atherosclerosis. Previous studies showed short to mid-term arrest and even regression of C‑IMT progression following bariatric surgery. We aimed to investigate the long-term effect of weight loss on C‑IMT progression 10 years after bariatric surgery in comparison to a population-based control cohort. METHODS In total, 21 eligible patients were examined preoperatively, at 5 and 10 years after bariatric surgery. Anthropometric parameters, plasma triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL-C), insulin, and glucose were assessed at all three study visits. C‑IMT was measured via B‑mode scans of the common carotid artery. C‑IMT progression was measured in an age-matched and BMI-matched cohort selected from the population-based Bruneck study to compare with changes in C‑IMT progression after bariatric surgery. RESULTS C‑IMT remained stable over the 10-year observation period after bariatric surgery. The control cohort showed a significant C‑IMT progression over 10 years. The difference in C‑IMT progression over 10 years was significant (p < 0.01) between both cohorts. CONCLUSION Weight loss induced by bariatric surgery halts the natural progression of C‑IMT over a 10-year observation period

    Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli

    Get PDF
    The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ54-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF–A–C–B–ArcB controls psp expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein–protein interactions, resulting in the release of the PspA–PspF inhibitory complex and the consequent induction of psp. In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex

    Dissipation of Proton Motive Force is not Sufficient to Induce the Phage Shock Protein Response in Escherichia coli

    Get PDF
    Phage shock proteins (Psp) and their homologues are found in species from the three domains of life: Bacteria, Archaea and Eukarya (e.g. higher plants). In enterobacteria, the Psp response helps to maintain the proton motive force (PMF) of the cell when the inner membrane integrity is impaired. The presumed ability of ArcB to sense redox changes in the cellular quinone pool and the strong decrease of psp induction in ΔubiG or ΔarcAB backgrounds suggest a link between the Psp response and the quinone pool. The authors now provide evidence indicating that the physiological signal for inducing psp by secretin-induced stress is neither the quinone redox state nor a drop in PMF. Neither the loss of the H+-gradient nor the dissipation of the electrical potential alone is sufficient to induce the Psp response. A set of electron transport mutants differing in their redox states due to the lack of a NADH dehydrogenase and a quinol oxidase, but retaining a normal PMF displayed low levels of psp induction inversely related to oxidised ubiquinone levels under microaerobic growth and independent of PMF. In contrast, cells displaying higher secretin induced psp expression showed increased levels of ubiquinone. Taken together, this study suggests that not a single but likely multiple signals are needed to be integrated to induce the Psp response
    corecore