1,861 research outputs found

    Optical Nanotransmission Lines: Synthesis of Planar Left-Handed Metamaterials in the Infrared and Visible Regimes

    Get PDF
    Following our recent theoretical development of the concept of nano-inductors, nano-capacitors and nano-resistors at optical frequencies and the possibility of synthesizing more complex nano-scale circuits, here we theoretically investigate in detail the problem of optical nano-transmission-lines (NTL) that can be envisioned by properly joining together arrays of these basic nano-scale circuit elements. We show how, in the limit in which these basic circuit elements are closely packed together, the NTLs can be regarded as stacks of plasmonic and non-plasmonic planar slabs, which may be designed to effectively exhibit the properties of planar metamaterials with forward (right-handed) or backward (left-handed) operation. With the proper design, negative refraction and left-handed propagation are shown to be possible in these planar plasmonic guided-wave structures, providing possibilities for sub-wavelength focusing and imaging in planar optics, and laterally-confined waveguiding at IR and visible frequencies. The effective material parameters for such NTLs are derived, and the connection and analogy between these optical NTLs and the double-negative and double-positive metamaterials are also explored. Physical insights and justification for the results are also presented.Comment: 26 pages, 12 figures, accepted for publication in JOSA B, scheduled to appear March 200

    Parallel, Series, and Intermediate Interconnections of Optical Nanocircuit Elements Part 1: Analytical Solution

    Full text link
    Following our recent development of the paradigm for extending the classic concepts of circuit elements to the infrared and optical frequencies [N. Engheta, A. Salandrino, A. Alu, Phys. Rev. Lett. 95, 095504 (2005)], in this paper we investigate the possibility of connecting nanoparticles in series and in parallel configurations, acting as nanocircuit elements, In particular, we analyze a pair of conjoined half-cylinders, whose relatively simple geometry may be studied and analyzed analytically. In this first part of the work, we derive a closed-form quasi-static analytical solution of the boundary-value problem associated with this geometry, which will be applied in Part II for a nanocircuit and physical interpretation of these results.Comment: 21 pages, 5 figure

    Peano High Impedance Surfaces

    Get PDF
    Following our previous work on metamaterial high-impedance surfaces made of Hilbert curve inclusions, here we theoretically explore the performance of the high-impedance surfaces made of another form of space-filling curve known as the Peano curve. This metamaterial surface, formed by a 2-D periodic arrangement of Peano curve inclusions, is located above a conducting ground plane and is shown to exhibit a high surface impedance surface at certain specific frequencies. Our numerical study reveals the effect of the iteration order of the Peano curve, the surface height above the conducting ground plane and the separation distance between adjacent inclusions.Comment: 16 pages, 9 figures, submitted to Radio Scienc

    Coupling of Optical Lumped Nanocircuit Elements and Effects of Substrates

    Get PDF
    We present here a model for the coupling among small nanoparticles excited by an optical electric field in the framework of our optical lumped nanocircuit theory [N. Engheta, A. Salandrino, and A. Alu Phys. Rev. Lett. 95, 095504 (2005)]. We derive how this coupling affects the corresponding nanocircuit model by adding controlled sources that depend on the optical voltages applied on the coupled particles. With the same technique, we can model also the presence of a substrate underneath nanocircuit elements, relating its presence to the coupling with a properly modeled image nanoparticle. These results are of importance in the understanding and the design of complex optical nanocircuits at infrared and optical frequencies.Comment: 21 pages, 4 figures, under revie

    Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab

    Get PDF
    The reflection from and transmission through a semi-infinite chiral medium are analyzed by obtaining the Fresnel equations in terms of parallel- and perpendicular-polarized modes, and a comparison is made with results reported previously. The chiral medium is described electromagnetically by the constitutive relations D = εE + iγB and H = iγE + (1/μ)B. The constants ε, μ, and γ are real and have values that are fixed by the size, the shape, and the spatial distribution of the elements that collectively compose the medium. The conditions are obtained for the total internal reflection of the incident wave from the interface and for the existence of the Brewster angle. The effects of the chirality on the polarization and the intensity of the reflected wave from the chiral half-space are discussed and illustrated by using the Stokes parameters. The propagation of electromagnetic waves through an infinite slab of chiral medium is formulated for oblique incidence and solved analytically for the case of normal incidence
    corecore