4 research outputs found

    The Costs of an Outreach Intervention for Low-Income Women With Abnormal Pap Smears

    Get PDF
    INTRODUCTION: Follow-up among women who have had an abnormal Papanicolaou (Pap) smear is often poor in public hospitals that serve women at increased risk for cervical cancer. This randomized controlled trial evaluated and compared the total cost and cost per follow-up of a tailored outreach intervention plus usual care with the total cost and cost per follow-up of usual care alone. METHODS: Women with an abnormal Pap smear (n = 348) receiving care at Alameda County Medical Center (Alameda County, California) were randomized to intervention or usual care. The intervention used trained community health advisors to complement the clinic's protocol for usual care. We assessed the costs of the intervention and the cost per follow-up within 6 months of the abnormal Pap smear test result. RESULTS: The intervention increased the rate of 6-month follow-up by 29 percentage points, and the incremental cost per follow-up was 959(2005dollars).Thecostperfollow−upvariedbytheseverityoftheabnormality.Thecostperfollow−upforthemostsevereabnormality(high−gradesquamousintraepitheliallesion)was959 (2005 dollars). The cost per follow-up varied by the severity of the abnormality. The cost per follow-up for the most severe abnormality (high-grade squamous intraepithelial lesion) was 681, while the cost per follow-up for less severe abnormalities was higher. CONCLUSION: In a health care system in which many women fail to get follow-up care for an abnormal Pap smear, outreach workers were more effective than usual care (mail or telephone reminders) at increasing follow-up rates. The results suggest that outreach workers should manage their effort based on the degree of abnormality; most effort should be placed on women with the most severe abnormality (high-grade squamous intraepithelial lesion)

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore