72 research outputs found

    Accurate measurement of ^{13}C - ^{15}N distances with solid-state NMR

    Full text link
    Solid-state NMR technique for measureing distances between hetero-nuclei in static powder samples is described. It is based on a two-dimensional single-echo scheme enhanced with adiabatic cross-polarization. As an example, the results for intra-molecular distances in α\alpha-crystalline form of glycine are presented. The measured NMR distances ^13 C(2) - ^15 N and ^13 C(1) - ^15 N are 1.496 ±\pm 0.002 \AA and 2.50 ±\pm 0.02 \AA, respectively.Comment: 12 page

    Screening effects in the electron-optical phonon interaction

    Full text link
    We show that recently reported unusual hardening of optical phonons renormalized by the electron-phonon interaction is due to the neglect of screening effects. When the electron-ion interaction is properly screened optical phonons soften in three dimension. It is important that for short-wavelength optical phonons screening is static while for long-wavelength optical phonons screening is dynamic. In two-dimensional and one-dimensional cases due to crossing of the nonperturbed optical mode with gapless plasmons the spectrum of renormalized optical phonon-plasmon mode shows split momentum dependence.Comment: 7 page

    Perturbation theory of the dynamic inverse spin Hall effect with charge conservation

    Full text link
    We present gauge-invariant theory of the dynamic inverse spin Hall effect driven by the spin--orbit interaction in metallic systems. Charge conservation is imposed diagrammatically by including vertex corrections. We show the charge current is induced by an effective electric field that is proportional to the spin current pumped by the magnetization dynamics. The result is consistent with recent experiments.Comment: 16pages, 5figure

    Electron-phonon renormalization in small Fermi energy systems

    Full text link
    The puzzling features of recent photoemission data in cuprates have been object of several analysis in order to identity the nature of the underlying electron-boson interaction. In this paper we point out that many basilar assumptions of the conventional analysis as expected to fail in small Fermi energy systems when, as the cuprates, the Fermi energy EFE_{\rm F} is comparable with the boson energy scale. We discuss in details the novel features appearing in the self-energy of small Fermi energy systems and the possible implications on the ARPES data in cuprates.Comment: 4 pages, 5 eps figures include

    Dephasing time of composite fermions

    Full text link
    We study the dephasing of fermions interacting with a fluctuating transverse gauge field. The divergence of the imaginary part of the fermion self energy at finite temperatures is shown to result from a breakdown of Fermi's golden rule due to a faster than exponential decay in time. The strong dephasing affects experiments where phase coherence is probed. This result is used to describe the suppression of Shubnikov-de Haas (SdH) oscillations of composite fermions (oscillations in the conductivity near the half-filled Landau level). We find that it is important to take into account both the effect of dephasing and the mass renormalization. We conclude that while it is possible to use the conventional theory to extract an effective mass from the temperature dependence of the SdH oscillations, the resulting effective mass differs from the mm^\ast of the quasiparticle in Fermi liquid theory.Comment: 14 pages, RevTeX 3.0, epsf, 1 EPS figur

    Quantum magneto-oscillations in a two-dimensional Fermi liquid

    Full text link
    Quantum magneto-oscillations provide a powerfull tool for quantifying Fermi-liquid parameters of metals. In particular, the quasiparticle effective mass and spin susceptibility are extracted from the experiment using the Lifshitz-Kosevich formula, derived under the assumption that the properties of the system in a non-zero magnetic field are determined uniquely by the zero-field Fermi-liquid state. This assumption is valid in 3D but, generally speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied only if the oscillations are strongly damped by thermal smearing and disorder. In this work, the effects of interactions and disorder on the amplitude of magneto-oscillations in 2D are studied. It is found that the effective mass diverges logarithmically with decreasing temperature signaling a deviation from the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due to inelastic interactions does not enter the oscillation amplitude, although these interactions do renormalize the effective mass. This result provides a generalization of the Fowler-Prange theorem formulated originally for the electron-phonon interaction.Comment: 4 pages, 1 figur

    Angle-dependence of quantum oscillations in YBa2Cu3O6.59 shows free spin behaviour of quasiparticles

    Full text link
    Measurements of quantum oscillations in the cuprate superconductors afford a new opportunity to assess the extent to which the electronic properties of these materials yield to a description rooted in Fermi liquid theory. However, such an analysis is hampered by the small number of oscillatory periods observed. Here we employ a genetic algorithm to globally model the field, angular, and temperature dependence of the quantum oscillations observed in the resistivity of YBa2Cu3O6.59. This approach successfully fits an entire data set to a Fermi surface comprised of two small, quasi-2-dimensional cylinders. A key feature of the data is the first identification of the effect of Zeeman splitting, which separates spin-up and spin-down contributions, indicating that the quasiparticles in the cuprates behave as nearly free spins, constraining the source of the Fermi surface reconstruction to something other than a conventional spin density wave with moments parallel to the CuO2 planes.Comment: 8 pages, 4 figure

    Plasmonic excitations in noble metals: The case of Ag

    Get PDF
    The delicate interplay between plasmonic excitations and interband transitions in noble metals is described by means of {\it ab initio} calculations and a simple model in which the conduction electron plasmon is coupled to the continuum of electron-hole pairs. Band structure effects, specially the energy at which the excitation of the dd-like bands takes place, determine the existence of a subthreshold plasmonic mode, which manifests itself in Ag as a sharp resonance at 3.8 eV. However, such a resonance is not observed in the other noble metals. Here, this different behavior is also analyzed and an explanation is provided.Comment: 9 pages, 8 figure

    Quantum Oscillations of Electrons and of Composite Fermions in Two Dimensions: Beyond the Luttinger Expansion

    Full text link
    Quantum oscillation phenomena, in conventional 2-dimensional electron systems and in the fractional quantum Hall effect, are usually treated in the Lifshitz-Kosevich formalism. This is justified in three dimensions by Luttinger's expansion, in the parameter omegac/μomega_c/\mu. We show that in two dimensions this expansion breaks down, and derive a new expression, exact in the limit where rainbow graphs dominate the self-energy. Application of our results to the fractional quantum Hall effect near half-filling shows very strong deviations from Lifshitz-Kosevich behaviour. We expect that such deviations will be important in any strongly-interacting 2-dimensional electronic system.Comment: 4 pages, 3 figures, LaTe

    Charge-density-wave instability in the Holstein model with quartic anharmonic phonons

    Full text link
    The molecular-crystal model, that describes a one-dimensional electron gas interacting with quartic anharmonic lattice vibrations, offers great potentials in the mapping of a relatively wide range of low-dimensional fermion systems coupled to optical phonons onto quantum liquids with retarded interactions. Following a non-perturbative approach involving non-Gaussian partial functional integrations of lattice degrees of freedom, the exact expression of the phonon-mediated two-electron action for this model is derived. With the help of Hubbard-Stratonovich transformation the charge-density-wave instability is examined in the sequel, with particular emphasis on the effect of the quartic anharmonic phonons on the charge-density-wave transition temperature.Comment: 12 pages, 3 figure
    corecore