3,708 research outputs found

    Experimental studies of equilibrium vortex properties in a Bose-condensed gas

    Get PDF
    We characterize several equilibrium vortex effects in a rotating Bose-Einstein condensate. Specifically we attempt precision measurements of vortex lattice spacing and the vortex core size over a range of condensate densities and rotation rates. These measurements are supplemented by numerical simulations, and both experimental and numerical data are compared to theory predictions of Sheehy and Radzihovsky [17] (cond-mat/0402637) and Baym and Pethick [25] (cond-mat/0308325). Finally, we study the effect of the centrifugal weakening of the trapping spring constants on the critical temperature for quantum degeneracy and the effects of finite temperature on vortex contrast.Comment: Fixed minor notational inconsistencies in figures. 12 pages, 8 figure

    Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose-Einstein condensates

    Get PDF
    We have studied the dynamics of large vortex lattices in a dilute-gas Bose-Einstein condensate. While undisturbed lattices have a regular hexagonal structure, large-amplitude quadrupolar shape oscillations of the condensate are shown to induce a wealth of nonequilibrium lattice dynamics. When exciting an m = -2 mode, we observe shifting of lattice planes, changes of lattice structure, and sheet-like structures in which individual vortices appear to have merged. Excitation of an m = +2 mode dissolves the regular lattice, leading to randomly arranged but still strictly parallel vortex lines.Comment: 5 pages, 6 figure

    Critical behavior of 3D SU(2) gauge theory at finite temperature: exact results from universality

    Get PDF
    We show that universality arguments, namely the Svetitsky-Yaffe conjecture, allow one to obtain exact results on the critical behavior of 3D SU(2) gauge theory at the finite temperature deconfinement transition,through a mapping into the 2D Ising model. In particular, we consider the finite-size scaling behavior of the plaquette operator, which can be mapped into the energy operator of the 2D Ising model. We obtain exact predictions for the dependence of the plaquette expectation value on the size and shape of the lattice and we compare them to Monte Carlo results, finding complete agreement. We discuss the application of this method to the computation of more general correlators of the plaquette operator at criticality, and its relevance to the study of the color flux tube structure.Comment: 10 pages, LaTeX file + 3 eps figure

    Critical behaviour and scaling functions of the three-dimensional O(6) model

    Full text link
    We numerically investigate the three-dimensional O(6) model on 12^3 to 120^3 lattices within the critical region at zero magnetic field, as well as at finite magnetic field on the critical isotherm and for several fixed couplings in the broken and the symmetric phase. We obtain from the Binder cumulant at vanishing magnetic field the critical coupling J_c=1.42865(3). The universal value of the Binder cumulant at this point is g_r(J_c)=-1.94456(10). At the critical coupling, the critical exponents \gamma=1.604(6), \beta=0.425(2) and \nu=0.818(5) are determined from a finite-size-scaling analysis. Furthermore, we verify predicted effects induced by massless Goldstone modes in the broken phase. The results are well described by the perturbative form of the model's equation of state. Our O(6)-result is compared to the corresponding Ising, O(2) and O(4) scaling functions. Finally, we study the finite-size-scaling behaviour of the magnetisation on the pseudocritical line.Comment: 13 pages, 20 figures, REVTEX, fixed an error in the determination of R_\chi and changed the corresponding line in figure 13

    H2O Maser Observations of Candidate Post-AGB Stars and Discovery of Three High-velocity Water Sources

    Full text link
    We present the results of 22 GHz H_2O maser observations of a sample of 85 post-Asymptotic Giant Branch (post-AGB) candidate stars, selected on the basis of their OH 1612 MHz maser and far-infrared properties. All sources were observed with the Tidbinbilla 70-m radio telescope and 21 detections were made. 86 GHz SiO Mopra observations of a subset of the sample are also presented. Of the 21 H_2O detections, 15 are from sources that are likely to be massive AGB stars and most of these show typical, regular H_2O maser profiles. In contrast, nearly all the detections of more evolved stars exhibited high-velocity H_2O maser emission. Of the five sources seen, v223 (W43A, IRAS 18450-0148) is a well known `water-fountain' source which belongs to a small group of post-AGB stars with highly collimated, high-velocity H_2O maser emission. A second source in our sample, v270 (IRAS 18596+0315), is also known to have high-velocity emission. We report the discovery of similar emission from a further three sources, d46 (IRAS 15445-5449), d62 (IRAS 15544-5332) and b292 (IRAS 18043-2116). The source d46 is an evolved post-AGB star with highly unusual maser properties. The H_2O maser emission from d62 is probably associated with a massive star. The source b292 is a young post-AGB star that is highly likely to be a water-fountain source, with masers detected over a velocity range of 210 km s^{-1}.Comment: 47 pages, 9 figures, 4 tables, accepted by Ap

    On the stability of Dirac sheet configurations

    Full text link
    Using cooling for SU(2) lattice configurations, purely Abelian constant magnetic field configurations were left over after the annihilation of constituents that formed metastable Q=0 configurations. These so-called Dirac sheet configurations were found to be stable if emerging from the confined phase, close to the deconfinement phase transition, provided their Polyakov loop was sufficiently non-trivial. Here we show how this is related to the notion of marginal stability of the appropriate constant magnetic field configurations. We find a perfect agreement between the analytic prediction for the dependence of stability on the value of the Polyakov loop (the holonomy) in a finite volume and the numerical results studied on a finite lattice in the context of the Dirac sheet configurations

    Towards a Realistic Equation of State of Strongly Interacting Matter

    Full text link
    We consider a relativistic strongly interacting Bose gas. The interaction is manifested in the off-shellness of the equilibrium distribution. The equation of state that we obtain for such a gas has the properties of a realistic equation of state of strongly interacting matter, i.e., at low temperature it agrees with the one suggested by Shuryak for hadronic matter, while at high temperature it represents the equation of state of an ideal ultrarelativistic Stefan-Boltzmann gas, implying a phase transition to an effectively weakly interacting phase.Comment: LaTeX, figures not include

    Bovine Dermal Matrix as Coverage of Facial Nerve Grafts

    Get PDF
    Introduction. Soft tissue defects over functional structures represent a challenge for the reconstructive surgeon. Often complex, reconstructive procedures are required. Occasionally, elderly or sick patients do not qualify for these extensive procedures. Case. We present the case of a 91-year-old lady with large hemifacial defect with exposed bone and nerves after tumor resection. We first performed radical resection including the fascia of the temporalis muscle and the frontal branch of the facial nerve. Due to the moribund elderly patient with a potentially high perioperative risk, we decided against flap reconstruction but to use bovine collagen/elastin matrix and split thickness skin graft. Results. No postoperative complications occurred and STSG and matrix healed uneventfully. Discussion. In selected cases, where complex reconstruction is not appropriate, this procedure can be a safe, easy, and fast alternative for covering soft tissue defects even on wound grounds containing nerve grafts

    Rapidly rotating Bose-Einstein condensates in anharmonic potentials

    Full text link
    Rapidly rotating Bose-Einstein condensates confined in anharmonic traps can exhibit a rich variety of vortex phases, including a vortex lattice, a vortex lattice with a hole, and a giant vortex. Using an augmented Thomas-Fermi variational approach to determine the ground state of the condensate in the rotating frame -- valid for sufficiently strongly interacting condensates -- we determine the transitions between these three phases for a quadratic-plus-quartic confining potential. Combining the present results with previous numerical simulations of small rotating condensates in such anharmonic potentials, we delineate the general structure of the zero temperature phase diagram.Comment: 5 pages, 5 figure
    • …
    corecore